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Abstract

Perinatal stem cells are a class of self-renewing and heterogeneous popula-
tions derived from mother and fetus tissues with unique immunomodulation 
and multi-lineage differentiation potential and the concomitant regenerative 
medicine. To date, a variety of perinatal stem cells such as hematopoietic 
stem cells, mesenchymal stem/stromal cells, amniotic stem cells and sub-
totipotent stem cells have been identified from hematological and non-hema-
topoietic placental sources, which serve as particularly interesting candidates 
for the administration of recurrent and refractory diseases. Herein, we focus 
on the characterization of the biofunction, application and the underlying 
mechanism of placental stem cell-based tissue engineering. Furthermore, we 
describe the promising prospective and formidable challenges during the ap-
plication of placental stem cells in the field of regenerative medicine.



2

w
w

w.openaccessebooks.com
Tissue Engineering: Current Research

Le
is

he
ng

 Z
ha

ng

1. Introduction

	 Stem cells are particular population with self-renewal and multi-lineage differentiation 
potential, and thus acknowledged as advantaged sources for tissue engineering and regenera-
tive medicine against recurrent and refractory diseases [1-3]. Stem cells are commonly divided 
into three subsets based on the origin including embryonic stem cells (ESCs), adult stem cells 
and perinatal stem cells [3-5]. The placenta is a temporal and functional organ between the 
maternal and fetal vascular beds with multiple properties and plays a pivotal role in facilitat-
ing fetal development and govern the outcome of pregnancy by immunomodulation as well as 
nutrient and oxygen delivery [6-8]. The “discarded” placenta acts as one of the most promising 
sources with a variety kind of placental stem cell generation from two counterparts of placenta 
(mother and fetus) such as hematopoietic stem cell (HSC), mesenchymal stem/stromal cells 
(MSCs), amniotic stem cells, and sub-totipotent stem cells [9-12]. 

	 For decades, substantial literatures contribute to the large-scale preparation of cell 
sources for regenerative medicine [4,13]. For instance, perinatal blood including cord blood 
and placental blood is a well-acknowledged source for HSC enrichment and the concomitant 
HSC transplantation (HSCT) and hematologic malignancy administration [4]. Meanwhile, the 
aforementioned MSCs generated from other non-hematopoietic placenta and umbilical cord 
tissues with unique hematological-supporting and immunomodulatory properties have been 
extensively investigated in advanced perinatal stem cell-based cytotherapy both clinically and 
preclinically [14-16].

	 In this chapter, we mainly focus on the state-of-the-art knowledge of perinatal stem 
cell-based tissue engineering from the view of biological phenotypes, biofunctions and the 
underlying molecular mechanism in regenerative medicine. Moreover, we also discuss the 
fascinating prospective and formidable challenges together with the future directions in the 
field of perinatal stem cell-based cytotherapy and tissue engineering.

2. Classification of Perinatal Stem Cells

2.1. Hematologic Stem Cells (HSCs)

	 HSCs are unique cell population with remarkable self-renewal and multiple potentiality 
towards functional hematopoietic cells and immune cells such as erythrocytes, white cells (e.g., 
neutrophils, eosinophils, basophils, lymphocytes, monocytes), macrophages, megakaryocytes 
and the derivatives (e.g., platelets) [17-20]. According to developmental biology, HSCs are 
unique subsets of endothelial cells, namely hemogenic endothelial cells, during embryogenesis 
[21]. As reviewed by Yuan et al, HSCs are one of the most well-acknowledged adult stem 
cells (ASCs) described with the “SMART” features including self-renewal, multi-lineage 
differentiation, apoptosis, rest and trafficking [22].
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	 Based on the inherent attributes, HSCs are widely used in allogeneic transplantations 
for the treatment of severe autoimmune diseases, hematologic malignancies and nonmalignant 
diseases[23-25]. For instance, according to the American Society of Hematology (ASH) 2021 
guidelines for sickle cell disease, HSC transplantation (HSCT) has been recognized as the 
only curative intervention for sickle cell disease (SCD) [26]. Notably, Foell et al verified the 
encouraging outcomes of SCD patients with haploidentical T-cell-depleted HSCT in children 
and adults [23]. Furthermore, patients are reported with better prognosis after co-transplanted 
HSCs with MSCs or an anti-thymocyte globulin (ATG) or other immunosuppressive agents 
for the rapid hematopoietic reconstitution and effective prevention of GvHD [27-29]. 

	 Distinguish those mobilized from adult peripheral blood, HSCs generated from the 
umbilical cord blood (UCB) and placental blood serve as preferable sources for unmanipulated 
haploidentical HSC preparation [28]. Of note, despite with high rates of success for various 
metabolic storage diseases and hematologic disorders, UCB-derived HSCs are mainly limited 
to children with low cell dose needs due to the limitation in yield [28, 30]. To date, HSCs have 
been reported successfully generated from human pluripotent stem cells (hPSCs), which thus 
provide alternative new cell sources for the preparation of HSCs as well as disease remodeling, 
toxicity screening and drug discovery in vitro [21,31-33].

2.2. Mesenchymal Stem/Stromal Cells (MSCs)

	 MSCs, also known as medicinal signaling cells or multipotent mesenchymal progenitor 
cells, are heterogeneous cell population with unique immunoregulatory and hematopoietic-
supporting properties, together with multi-lineage differentiation potential towards adipocytes, 
osteoblasts and chondrocytes [34-37]. Since the year of 1968, MSCs with diverse origins have 
been generated from adult tissues (e.g., adipose tissue, bone marrow, dental pulp or follicle, 
synovium) [24, 38, 39], perinatal tissues (umbilical cord, umbilical cord blood, placental 
tissue, amniotic membrane or fluid) [40-42] and even differentiated from human pluripotent 
stem cells (e.g., embryonic stem cells, induced pluripotent stem cells) [43-45]. For example, 
our group recently reported the high-efficient generation of MSCs from embryonic stem cells 
and induced pluripotent stem cells via screening and combination of chemical small molecules 
[43,44].

	 As the uppermost stromal cells in the constructive microenvironment, MSCs play pivotal 
roles in physiological hematopoiesis and the concomitant hematologic malignancies [11,36, 
46]. For example, Zhao and the colleagues compared the cryobiology and transcriptomic 
characteristics of umbilical cord-derived MSCs (UC-MSCs) at various passages and 
identified the conservative property in the treatment of graft-versus-host disease (GvHD) [11]. 
Conversely, Huo et al and Wei et al reported that bone marrow-derived MSCs (BM-MSCs) 
generated from patients with acquired aplastic anemia revealed multifaceted variations upon 
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those from healthy donors in orchestrating the subpopulation of T lymphopoiesis, together 
with the efficacy of UC-MSCs or VCAM-1+ MSCs upon the corresponding disease model [42, 
46].

	 Distinguish from those derived from adult tissues and pluripotent stem cells, perinatal 
stem cells such as UC-MSCs and placental-derived MSCs (P-MSCs) have been demonstrated 
with preferable characteristics in long-term in vitro proliferation and immunomodulation, 
together with remission of ethic risk and etiological risk [11,42,45]. Considering the robust 
superiority, MSCs generated from perinatal tissue serve as splendid alternative cell sources for 
tissue engineering and regenerative medicine [15,47].

2.3. Amniotic Stem Cells

	 Amniotic membrane is a unique construction and highly abundant tissue, which thus acts 
as a splendid source and attractive material for stem cell isolation such as amniotic epithelial 
cells (AECs) and amniotic mesenchymal stem cells (AMSCs) [48]. In details, AECs and 
AMSCs are respectively isolated from embryonic ectoderm and embryonic mesoderm, which 
possess similar immunophenotype whereas manifest differences in multipotential towards 
mesodermal lineages [49].

	 Amniotic stem cells are generated from perinatal amniotic membrane with low 
immunogenicity and anti-inflammatory capacities, and capable of promoting migration 
and adhesion of epithelial cells and the resultant tissue engineering [50, 51]. For instance, 
Cetinkaya-Un et al reported the alleviative effect of AMSCs upon X-irradiation-induced 
testicular damage via suppressing endoplasmic reticulum stress and apoptosis [52].

2.4. Sub-totipotent Stem Cells

	 Sub-totipotent stem cells, also acknowledged as MSC system, are left-over cell population 
during embryonic development, which are considered as the top of a hierarchical system in 
post embryonic development. As a hypothesized undefined subfraction of embryonic-like stem 
cells, sub-totipotent stem cells are available to generate derivatives with similar phenotypic 
biomarkers for clinical applications [53,54]. 

	 The post-embryonic sub-totipotent stem cells are composed of all MSCs, which thus 
possess the multifaceted characteristics including multilineage differentiation, paracrine and 
autocrine (e.g., cytokines, anti-inflammatory factors, chemokines, micro-vesicles, exosomes), 
low immunogenicity, and functional microenvironment [11,54]. For instance, bone marrow-
derived Flk1+CD31-CD34- MSCs of sub-totipotent stem cells have been demonstrated with 
differentiation potency towards to produce osteoblast, hepatocyte-like cells, islet-like pancreas 
cells, neuron and endothelial cells at single-cell level [54]. 
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3. Regulatory Mechanisms of Perinatal Stem Cells

	 To date, perinatal stem cells, including the hematologic and non-hematologic counterparts, 
have been extensively explored in a variety of disease treatment, and in particular, the 
intractable relapsing and refractory diseases by orchestrating a series of regulatory mechanisms 
[55-58]. Generally, MSCs function via an elaborate orchestration of mode of action such as 
differentiation, secretion (e.g., autocrine, paracrine), bio-directional immunomodulation [59, 
60]. 

3.1. Direct- and Trans- Differentiation

	 As mentioned above, HSCs can differentiate into hematopoietic progenitor cells 
and the resultant functional blood cells and immune cells, which thus play a pivotal role in 
hematopoietic homeostasis and immunologic homeostasis [61, 62]. Similarly, MSCs identified 
from non-hematologic perinatal tissue have been reported with multi-lineage differentiation 
potential towards functional tissue cells (e.g., chondrocytes, vascular endothelial cells)[42, 
54]. For instance, Hou et al took advantage of P-MSCs with dual-fluorescence expression 
for the treatment of refractory Crohn’s-like enterocutaneous fistula in mice, and verified 
the spatio-temporal distribution and therapeutic mechanisms of P-MSCs via accelerating 
neovascularization and downregulating ROS [15]. 

3.2. Autocrine and Paracrine

	 Perinatal tissue-derived MSCs fulfil a predominant characteristic in constructing 
an advantageous microenvironment critical to hematogenesis and pregnancy [63]. Of the 
mode of action, secretion including autocrine and paracrine plays a core role in intercellular 
communications between MSCs and the adjacent damaged tissues or cells, which is the 
cornerstone of MSC-based cytotherapy and tissue engineering for regenerative medicine [15, 
64]. 

	 To date, a variety of secreted substances by perinatal stem cells have been consecutively 
identified including exosome, micro-vesicles (MVS), cytokines and anti-inflammatory factors 
(e.g., VEGF, IL-6, IL-8, IL-10, PGE-2, HGF, SDF-1) in the cultural supernatant. For instance, 
exosomes containing microRNAs, circRNAs and proteomes have been put forward by numerous 
talented investigators in the field and manifest robust prospective in preclinical and clinical 
practice [9, 65-67]. For example, Loy et al recently reported the therapeutic implications of 
UC-MSC exosomes and conditioned medium in attenuating influenza virus-associated acute 
lung injury (ALI) [68]. Instead, Del Fattore and the colleagues demonstrated the different 
effects of MSC-derived extracellular vesicles (MSC-EVs) upon U87MG glioblastoma cells 
and thus held the prospective for delivering antiblastic drugs [69]. 
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	 Nevertheless, before large-scale application in clinical application, multidimensional 
improvement should be improved to overcome the inherent disadvantages and risks of perinatal 
stem cells, and in particular, perinatal tissue-derived MSCs with low-efficacy in exosome 
release, heterogeneity, rapid degradation and clearance [70-73].

3.3. Bidirectional Immunomodulation

	 Of perinatal stem cells, MSCs-derived from different counterparts (e.g., UC-MSCs, 
P-MSCs, AMSCs) revealed splendid characteristics, and in particular, the high cellular vitality 
and bidirectional immunomodulatory effect [11,74]. Extensive literatures have indicated 
the secretion of multiple anti-inflammatory factors involved in immunomodulation and the 
resultant tissue engineering, including the aforementioned interleukin family (e.g., IL-2, IL-6, 
IL-8), angiopoietin-1, stromal cell-derived factor 1 (SDF-1), transforming growth factor (TGF), 
keratinocyte growth factor (KGF), and vascular endothelial growth factor (VEGF) [42, 75-79]. 

	 For decades, perinatal stem cells have been reported with therapeutic effect upon immune 
diseases such as graft-versus-host disease (GvHD), atopic dermatitis, allergic rhinitis, urticaria, 
pediatric asthma, systemic lupus erythematosus (SLE), immunologic thrombocytopenic 
purpura [11,80, 81]. For instance, mast cells with pro-inflammatory factor expression have been 
considered playing a critical role in numerous autoimmune processes and allergic reactions, 
which can be effectively reversed by systemic MSC administration [82,83]. Simultaneously, 
perinatal tissue-derived MSCs have also been indicated in the administration of intractable 
disorders including diabetic nephropathy, aplastic anemia, chronic obstructive pulmonary 
disease (COPD), acute myocardial infarction (AMI), COVID-19 induced acute lung injury/acute 
respiratory distress syndrome (ALI/ARDS) via suppressing cytokine release syndrome (CRS) 
and improving the microenvironment to reduce lung epithelial cell damage [11, 46, 59, 76, 84-88].

4. Perinatal Stem Cell-based Tissue Engineering

	 Perinatal tissues such as cord blood, umbilical cord, placenta, placental blood and 
amniotic membrane are advantaged sources for perinatal stem cell generation as well as 
tissue engineering and regenerative medicine[6-8]. For example, Xin et al took advantage 
of a collagen scaffold laden with UC-MSC-derived exosomes (CS/Exos) for the treatment 
of intrauterine adhesions, and verified the therapeutic effect including promoting fertility 
restoration and endometrium regeneration via facilitating anti-inflammatory responses 
and improving macrophage immunomodulation[89]. Yea et al combined UC-MSCs with a 
biomimetic hydroxyapatite-gradient (HA-G) scaffold for the rotator cuff repair by ameliorating 
the damage of tendon-to-bone interface (TBI), and found that collagen organization and 
cartilage formation were respectively improved by 52% at 8 weeks and 262.96% at 4 weeks 
compared to the repair group [90]. 
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	 As to osteoarticular disorders, Chung et al compared the therapeutic effect of various 
hydrogels/UC-MSCs composites upon rats with articular injury including alginate/UC-MSCs, 
chitosan/UC-MSCs, pluronic/UC-MSCs, hyaluronic acid (HA) /UC-MSCs. With the aid of 
multifaceted measurement indicators, they verified that HA/hUC-MSCs rather than the relevant 
hydrogel composites resulted in achieved cellular arrangements and collagen organization 
pattern much similar to those adjacent uninjured articular cartilages [91]. Furthermore, Tang 
and the colleagues verified that small extracellular vesicles (sEVs) derived from UC-MSCs 
(UC-MSC-sEVs) showed comparable therapeutic effect for osteoarthritis (OA) with UC-MSCs, 
whereas with upregulated proteins associated with immune effector process, extracellular 
matrix (ECM) organization, Rap1 and PI3K-AKT signaling pathways instead [92]. 

	 Taken together, the encapsulated MSCs or other counterparts of perinatal stem cells 
as well as derivatives (e.g., sEVs, exosomes) in combination with injectable hydrogels or 
relevant biomaterials have attracted considerable attentions in recurrent and refractory disease 
management attributes to their advantaged chondrogenic differentiation capacity [93-95]. 

5. Clinical Trials of Perinatal Stem Cell-based Cytotherapy

	 During the past years, perinatal stem cell-based cytotherapy has caught the attention 
of biologists and clinicians in the field for tissue engineering and regenerative medicine. 
According to the Clinicaltrials.gov database of National Institutes of Health (NIH), a total 
number of 10 clinical trials has been registered worldwide (up to May 23th, 2022) such as 
China, United States, Netherlands, France and Mexico (Figure 1). The interventional studies 
initiated by clinical investigators are aiming to explore the safety and effectiveness of MSC-
based remedies for relevant disease treatment (Figure 1). Of the aforementioned clinical trials, 
1 was withdraw or recruiting, 2 were not yet recruiting, 4 were completed, and 2 were unknown 
status (Table 1). Meanwhile, we noticed that most of the registered clinical trials were in the 
Phase 1 and/or Phase 2 stage(s) except 2 trials were unknown instead (Table 1).

Figure 1: Illustration of perinatal stem cell-based clinical trials.
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Table 1: Perinatal stem cell-based clinical trials.

NCT No. Status Phases Enrollment Locations

NCT02772289 Completed Phase 2 90
Maternal and Child Health Hospital of Foshan, 

China

NCT04034615 Recruiting Phase 2 90
Maternal and Child Health Hospital of Foshan, 

China

NCT03356821 Completed Phase 1, 2 10
Wilhelmina Children’s Hostpital/University 

Medical Center Utrecht, Netherlands

NCT01700166 With-drawn Phase 1 0
Children's Memorial Hermann Hospital; University 
of Texas Health Science Center - Houston, United 

States
NCT01284673 Completed - 10 Assistance publique Hopitaux de Marseille, France
NCT02881970 Unknown status Phase 1, 2 20 Assistance Publique Hopitaux de Marseille, France
NCT03760900 Completed Early Phase 1 15 -

NCT01506258 Unknown status - 20
Neonatology Department of the Pediatrics Service, 

Hospital Universitario Dr. Jose E. Gonzalez, 
Mexico

NCT04798716 Not yet recruiting Phase 1, 2 55 Mission Community Hospital, United States
NCT03899298 Not yet recruiting Phase 1 5000 -

	 According to the ClinicalTrials.gov website, 10 perinatal stem cell-based clinical trials 
were intuitively displayed (up to May 23th, 2022).

6. Prospective and Challenges

	 Perinatal tissues are “discarded” medical wastes for the huge quantity of hematopoietic 
and non-hematopoietic stem cell generation for tissue engineering. Considering the special 
structure between mother and fetus, perinatal stem cells are splendid “seeds” that manifest 
low immunogenicity, robust proliferation, and immunoregulatory attributes. However, there’s 
still a long way before the large-scale application in regenerative medicine and new drug 
application (NDA). Firstly, despite perinatal stem cells and the concomitant derivatives (e.g., 
exosome, sEV) have emerged as promising alternatives for relapsing and refractory disease 
administration and tissue engineering, yet the continuous optimization of interventional 
remedies is still urgently needed to fulfil the aims such as safety, effectiveness, repeatability and 
cost-effective for clinical practice. Secondly, for the large-scale preparation of the homogenous 
and clinical-grade perinatal stem cells, the GMP-compliant cryopreserved master cell bank 
and the standardized preparation technology are of equal importance and urgently needed 
such as culture materials, conditions (e.g., culture medium, supplements, relative humidity, 
the concentration of CO2 and O2), technologies and manipulations[96]. Thirdly, extensive 
literatures have suggested that MSC-encapsulated biomaterial scaffolds (e.g., HA, nHAP, 
PLGA) exhibit increased cell vitality with prolonged curative effect and decreased apoptosis 
as well as enhanced multi-lineage differentiation potential, yet the systematic and detailed 
characterization of the biofunction and underlying mechanism are still far from satisfaction. 
Overall, in the context of tissue damage and intractable disorders, perinatal stem cells with 
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multifaceted opportunities and challenges are recognized as promising “off-the-shelf” product 
in the next-generation cytotherapy and tissue engineering by targeting recurrent and refractory 
diseases.
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