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PREFACE

	 In diverse areas of mathematics, physics, chemistry, and biology, and several applications, 

nonlinear differential / partial differential equations are included. To proper understanding the 

qualitative characteristics of many phenomena and processes in various fields of natural science, 

exact (closed-form) solutions of differential equations play an essential role. Nonlinear systems 

are complicated because of the high dependency of the system variables on each other. Most of 

the Engineers are using linear systems or linearization of the nonlinear system in their analysis the 

nonlinear problems are challenging to solve and are so expensive.

	 The approximate analytical solutions can serve as a basis for perfecting and testing computer 

algebra software packages for solving differential equations. It is significant that many equations of 

physics, chemistry and biology contain empirical parameters. This solutions allow researchers to 

design and run experiments, by creating appropriate natural conditions, to determine these parameters 

or functions.This book contains some nonlinear problems in physical and chemical sciences.

	 A large number of new approximate solutions to nonlinear equations are described. Equations 

of parabolic, mixed, and general types of first, Second-order nonlinear equations are considered. The 

nonlinear problem in this book can also apply nonlinear problem in heat and mass transfer, wave 

theory, nonlinear mechanics, hydrodynamics, gas dynamics, plasticity theory, nonlinear acoustics, 

combustion theory, nonlinear optics, theoretical physics, differential geometry, control theory, 

chemical engineering sciences, biology, and other fields.

	 Therefore, some of the methods are outlined in a schematic and somewhat simplified manner, 

with necessary references made to books where these methods are considered in more detail. This 

book may be used by lecturers of universities and colleges for practical courses and lectures on 

nonlinear mathematical physics for graduate and postgraduate students. Furthermore, the books may 

be used for researchers in field of modelling of nonlinear processes in physical and chemical sciences.

	 The authors hope that a broad range of scientists, university professors, engineers, and students 

in the fields of mathematics, physics, dynamics, power, chemistry, and engineering sciences will 

benefit from this book.
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1. Introduction

1.1. Mathematical Modeling

	 A  mathematical model  is a description of a  system  using  mathematical  concepts 
and language. The process of developing a mathematical model is termed  mathematical 
modeling. Mathematical models can take many forms, including but not limited to dynamical 
systems, statistical models, differential equations, or game theoretic models. These and other 
types of models can overlap, with a given model involving a variety of abstract structures. 
In general, mathematical models may include  logical models, as far as logic is taken as a 
part of mathematics. In many cases, the quality of a scientific field depends on how well 
the mathematical models developed on the theoretical side agree with results of repeatable 
experiments. Lack of agreement between theoretical mathematical models and experimental 
measurements often leads to important advances as better theories are developed.

	 If all the operators in a mathematical model exhibit linearity, the resulting mathematical 
model is defined as linear. A model is considered to be nonlinear otherwise. The definition 
of linearity and nonlinearity is dependent on context, and linear models may have nonlinear 
expressions in them. For example, in a statistical linear model, it is assumed that a relationship 
is linear in the parameters, but it may be nonlinear in the predictor variables. Similarly, a 
differential equation is said to be linear if it can be written with linear differential operators, 
but it can still have nonlinear expressions in it. In a  mathematical programming  model, if 
the objective functions and constraints are represented entirely by linear equations, then the 
model is regarded as a linear model. If one or more of the objective functions or constraints are 
represented with a nonlinear equation, then the model is known as a nonlinear model.

	 Nonlinearity, even in fairly simple systems, is often associated with phenomena such 
as chaos and irreversibility. Although there are exceptions, nonlinear systems and models tend 
to be more difficult to study than linear ones. A common approach to nonlinear problems 
is linearization, but this can be problematic if one is trying to study aspects such as irreversibility, 
which are strongly tied to nonlinearity. 
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	 One can think of mathematical modeling as an activity or process that allows a 
mathematician to be a bio-chemical, an ecologist, an economist, a physiologist. Instead of 
undertaking experiments in the real world, a modeler undertakes experiments on mathematical 
representations of the real world. Analytical models are mathematical models that have a 
closed form solution, i.e. the solution to the differential equations used to describe changes in 
a system can be expressed as a mathematical analytic function. 

1.2. Boundary value problems

	 In  mathematics, in the field of  differential equations, a  boundary value problem  is 
a differential equation together with a set of additional restraints, called the boundary conditions. 
A solution to a boundary value problem is a solution to the differential equation which also 
satisfies the boundary conditions.

	 Boundary value problems arise in several branches of physics and chemistry. Problems 
involving the diffusion or heat equation such as the determination of normal modes, are often 
stated as boundary value problems. A large class of important boundary value problems is 
the Sturm–Liouville problems. The analysis of these problems involves the eigen functions of 
a differential operator. To be useful in applications, a boundary value problem should be well 
posed. This means that given the input to the problem there exists a unique solution, which 
depends continuously on the input. Much theoretical work in the field of partial differential 
equations  is devoted to proving that boundary value problems arising from scientific and 
engineering applications are in fact well-posed.

1.3. Biochemical systems 

	 Mathematical modeling in biochemical system is based on ordinary  differential 
equations (ODE) or partial differential equations (PDE). Biochemical processes are represented 
using power-law expansions in the variables of the system. This framework, which became 
known as Biochemical systems Theory, has been developed since the 1960s by Michael 
Savageau and others for the systems analysis of biochemical processes [1,2]. According to 
Cornish-Bowden they “regarded this as a general theory of metabolic control, which includes 
both metabolic control analysis and flux-oriented theory as special cases [3]. The dynamics of 
a species is represented by a differential equation with the structure:

∏∑=
k

f
kj

j
ij

i jkX
dt

dX γµ . 			   (1.1)

	 Where Xi  represents one of the nd variables of the model (metabolite concentrations, 
protein concentrations or levels of gene expression). j represents the nf biochemical processes 
affecting the dynamics of the species. On the other hand, μij  (stoichiometric coefficient),  γ 

j  (rate constants) and fjk  (kinetic orders) are two different kinds of parameters defining the 
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dynamics of the system.

	 The principal difference of power-law modelswith respect to other ODE models used 
in biochemical systems is that the kinetic orders can be non-integer numbers. A kinetic order 
can have even negative value when inhibition is modelled. In this way, power-law models 
have a higher flexibility to reproduce the non-linearity of biochemical systems. Modelling and 
Simulating networks of biochemical reactions are an active research field today.

	 In general, using matrix notation, one can always write down the rate laws for a system 
of biochemical reactions on the following form:

dt
dSN j = 			    (1.2)

	 Where S is a vector of concentrations, j is a vector of reaction fluxes, and N denotes 
the stoichiometric matrix. The resulting system of ordinary differential equations can be 
solved using some suitable numerical or analytical method. In this book some of the following 
nonlinear bio-chemical problems are solved analytically and numerically.

1.4. Concentrations inside the cationic glucose sensitive membrane

	 In spite of extensive experimental investigations, only a few studies concerned 
mathematical modelling of such systems [4-8]. Albin et al. [9] developed a mathematical 
model to describe the steady state behaviour of a cationic glucose-sensitive membrane. 
Gough and co-workers [6-8] modelled the steady state behaviour and transient response of a 
cylindrical glucose sensor. Wuet al. [9] derived a mathematical model with consideration of 
oxygen limitation to describe the glucose sensitivity of a cationic membrane at the steady state 
conditions. The reaction scheme in a glucose-sensitive membrane can be written as follows:

Glucose +  → eoxidaseGlu
2O cos Gluconic acid+ 22OH                                 (1.3)

	 The catalase catalyzes the conversion of hydrogen peroxide to oxygen and water:

222
catalase

22 O
2
1OHOH + →                                                                   (1.4)

	 If an excess of catalase is immobilized with glucose oxidase, all hydrogen peroxide is 
reduced. Thus, the overall reaction becomes:

Glucose + →2/2O  Gluconicacid                                                        (1.5)

	 The corresponding governing system of non-linear differential equation in planar co-
ordinates inside the cationic glucose sensitive membrane may be written as [10]:

                                             			   0
)(2

1
2

2

=
++

−
∂

∂

OXgggOX

OXgmaxOX
OX kCCkC

CCv

x
C

D
(1.6)
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	 Where OXC , aC  and aC  denote the concentration of the oxygen, glucose and gluconic 
acid respectively. 

aoxg D  and  D D ,  are the corresponding diffusion coefficients. x is the spatial 
coordinate and maxv  is the maximum reaction rate. oxg k  and  k  are Michaelis-Menten constant 
for the glucose and glucose oxidase respectively? Equations (1.6) - (1.8) are solved for the 
following boundary conditions by assuming that the membrane is immersed in a well stirred 
external medium with a constant concentration of each species due to continuous flow of a 
fresh medium. 

*
OXOX CC = ;  *

gg CC = ;  0=aC  at  x = 0, x = l				                    (1.9)

	 Where l is the thickness of the membrane and *
OXC  and *

gC are the concentrations of 
oxygen and glucose in the external solution, respectively. In this book, the above problem was 
solved analytically for all values of the parameters using the Homotopy analysis method.

1.5. Immobilized enzymes system with reversible Michaelis-Menten Kinetics

	 Recently, there has been much interest in the development of Immobilized enzyme 
system are immobilized enzyme system are also analyzed for more complex kinetics: reversible 
reactions [11], competitive Michaelis-Menten kinetics [12] or two-substrate enzymatic reactions 
[13]. Under these above assumptions, the differential mass balance equation for substrate and 
product in spherical co-ordinates are a follows [14]:

S
SSS

S V
dr

dC
r
D

dr
CdD =






+

2
2

2

			   (1.10)

S
PPP

P V
dr

dC
r
D

dr
CdD −=






+

2
2

2
                         (1.11)

	 The boundary conditions are

0;0 ==
dr

dC  
dr

dC PS  when 0=r 			   (1.12)

PRPSRS CCCC == ;  when Rr = 			   (1.13)  

	 Where 
( )( )
( ) PPMSM

eqPSm
S CKKCK

KCCV
V

++
−

=  and SC  and PC  denote the dimensional substrate and 

product concentration, r is the radial co-ordinate. The form of SV  determines the mathematical 

method to solve the above equations and its complexity. Most of the already published articles 

on enzymatic solution were dealt with non-reversible Michaelis-Menten kinetics [15]. In book 

the concentrations were determined by solving the above non linear equation using Homotopy 

(1.8)0
)(2

2

=
++

−
∂

∂

OXgggOX

OXgmaxg
g kCCkC

CCv
x
C

D

0
)(2

2

=
++

+
∂
∂

OXgggOX

OXgmaxa
a kCCkC

CCv
x
CD (1.7)
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perturbation method.

1.6. Objectives and scope of the present investigation

	 The objectives of the present investigation are as follows:

➢	 To find the analytical expression of concentrations inside the cationic glucose-sensitive 
membrane by solving the system of non linear equations using Homotopy analysis method.

➢ 	 To derive a general and closed form of an analytical expression pertaining to the substrate 
concentration profile and effectiveness factor.

➢ 	 To evaluate the approximate solution of non-linear boundary value problems in 
immobilized glucoamylase kinetics using asymptotic methods.

➢ 	 To get the analytical expression of concentration and effectiveness factor of the reactant 
inside the catalyst pellets using modified Adomain decomposition method.

1.7. Organization of the books

	 This book presents the development of mathematical models using Homotopy 
perturbation method, Homotopy analysis method and Adomian decomposition method are 
used to predict the theoretical results on solving the system of nonlinear ordinary and partial 
differential equations. Numerical simulations are also obtained and compared to show the 
efficiency of the above methods applied.

I.	 Chapter one gives a short introduction to mathematical models, their applications in 
differential equations and some bio-chemical systems.

II.	 Chapter two provides a mathematical model of a cationic glucose-sensitive 
membrane. This model involves the system of non-linear steady-state reaction-diffusion 
equations. Analytical expressions pertaining to concentration of oxygen, glucose and gluconic 
acid for all values of parameters are presented. Homotopy analysis method is used to evaluate 
the approximate analytical solutions of the non-linear boundary value problem. Analytical 
approximation are compared with numerical simulation results.

III.	 Chapter three presents a mathematical model of immobilized enzyme system. The model 
is based on non-stationary diffusion equation containing a nonlinear term related to reversible 
Michaelis-Menten kinetics of the enzymatic reaction. He’s Homotopy perturbation method is 
used to solve the non-linear reaction/diffusion equation in immobilized enzymes system. A 
general and closed form of an analytical expression pertaining to the substrate concentration 
profile and effectiveness factor are reported for all possible values of parameters.
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IV.	 Chapter four focuses on theoretical model to describe the enzyme reaction, mass 
transfer and heat effects in the calorimetric system. The model is based on non- stationary 
diffusion equation containing a non-linear term related to immobilize liver esterase by flow 
calorimetry. The complex numerical methods (Adomian decomposition method, Homotopy 
analysis and perturbation method) is used to solve the non-linear differential equations 
Approximate analytical expressions for substrate concentration have been derived for all 
values of parameters. 

	 In Chapter five, the analytical expression of concentration and effectiveness factor of 
the reactant inside the catalyst pellets are derived. The approximate analytical expression for 
the steady state concentration of substrate for all values of parameters γ and β in a packed 
bed reactor was obtained using the modified Adomian decomposition method.

V.	 Chapter six is the overall conclusion and future enhancements of the book. 
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2. Analytical Expressions of Concentrations Inside the Cationic Glucose-Sensitive 
Membrane

2.1. Introduction

	 Diabetes is a chronic disease with major vascular and de- generative complications. The 
common treatment for diabetic patients is periodic insulin injection. However, poor control of 
blood glucose level and poor patient compliance are associated with this method. This approach 
is a poor approximation of normal physiological insulin secretion. The better ways of insulin 
administration are being sought. Therefore, there is a need for self-regulated delivery systems 
[1,2] having the capability of adapting the rate of insulin release in response to changes in 
glucose concentration in order to keep the blood glucose levels within the normal range. 

	 Various sensing mechanisms, such as competitive binding, substrate-enzyme reaction, 
pH-dependent polymer erosion or drug solubility, and various types of devices, have been 
applied to design glucose-sensitive insulin delivery systems [3-6]. Horbett and co-workers 
[7-10] were the first to investigate systems consisting of immobilized glucose oxidase in a 
pH responsive polymeric hydrogel, enclosing a saturated insulin solution. In insulin delivery 
system, some of which consist of immobilized glucose oxidase and catalase in pH responsive 
polymeric hydrogels. According to the nature of charge present, the pH sensitive hydrogels may 
be classified as cationic or anionic. Cationic glucose sensitive hydrogels were experimentally 
studied extensively [10-13]. 

	 In spite of extensive experimental investigations, only a few studies concerned modelling 
or theoretical design of such systems [14-17]. Albin et al. [9] developed a mathematical model 
to describe the steady state behaviour of a cationic glucose-sensitive membrane. Gough and 
co- workers [15-17] modeled the steady state behaviour and transient response of a cylindrical 
glucose sensor. Wu et al. [18] derived a mathematical model with consideration of oxygen 
limitation to describe the glucose sensitivity of a cationic membrane at the steady state. 

	 To our knowledge, no general analytical expressions for the concentration of oxygen, 
glucose and gluconic acid inside the cationic glucose-sensitive membrane have been reported 
for all values of the parameters [18]. The purpose of this chapter is to derive an analytical 
expression of the steady-state concentration of reactant by solving the non-linear reaction 
diffusion equation using Homotopy analysis method (HAM). 

Nolinear Nonlinear Problems in the Cationic Glucose-Sensitive 
Membrane

Chapter 2
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2.2. Mathematical Formulation of the Problem 

	 The reaction scheme in a glucose-sensitive membrane can be written as follows:

Glucose + Eγ    	 Gluconic acid + 22OH 			   (2.1)

	 The catalase catalyzes the conversion of hydrogen peroxide to oxygen and water:

22OH 222 O
2
1OH + 							       (2.2)

	 If an excess of catalase is immobilized with glucose oxidase, all hydrogen peroxide is 
reduced. Thus, the overall reaction becomes:

Glucose + →2O
2
1 Gluconic acid							      (2.3)

	 Glucose and oxygen diffuse from the medium into the membrane and glucose is 
converted to gluconic acid, causing a pH drop and a consequent change in the permeability 
of the membrane to solutes. Based on the reaction, only one-half of an oxygen molecule is 
consumed per molecule of glucose when an excess of catalase is present. The corresponding 
governing non-linear differential equation in planar co-ordinates inside the cationic glucose 
sensitive membrane may be written as [18]:

0
)(2

1

OXgggOX

OXgmax
2
OX

2

OX =
++

−
∂

∂
kCCkC

CCv
x
C

D 			   (2.4)

0
)( OXgggOX

OXgmax
2
g

2

g =
++

−
∂

∂

kCCkC
CCv

x
C

D             			   (2.5) 

0
)( OXgggOX

OXgmax
2

a
2

a =
++

+
∂
∂

kCCkC
CCv

x
CD 				   (2.6)

	 Where OXC , gC  and aC  denote the concentration of the oxygen, glucose and gluconic 
acid respectively. aoxg   and   , DDD  are the corresponding diffusion coefficients. 𝑥 is the spatial 
coordinate and maxv  is the maximum reaction rate.  oxg  and  kk  are Michaelis-Menten constant 
for the glucose and glucose oxidase respectively. Equations (2.4) - (2.6) are solved for the 
following boundary conditions by assuming that the membrane is immersed in a well stirred 
external medium with a constant concentration of each species due to continuous flow of a 
fresh medium. 

*
OXOX CC = ; *

gg CC = ;  0a =C  at  x = 0, x = l			   (2.7) 

	 Where l is the thickness of the membrane and *
OXC  and *

gC are the concentrations of  
oxygen and glucose in the external solution, respectively. We can assume that the diffusion 
coefficient of glucose and gluconic acid are equal ( DDD == ag ). We make the non-linear 
differential equations (2.4)-(2.6) dimensionless form by defining the following dimensionless 
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equations. (4.4) - (4.6) are reduced to the following dimensionless forms:

                     

	

Equations (2.4) - (2.6) are reduced to the following dimensionless forms:
2

2
2

μ u- 0αu βu2 1
γv γ

u
χ
∂

=
∂ + +

                                                                                                 

                                                                                                 
2

1
2

μv u- =0
χ γ αu βu1+ +

γv γ

∂
∂  

 
                                                                                                    

2
1

2

μw u- =0
χ γ αu βu1+ +

γv γ

∂
∂  

 
 	

	 Where u, v and w represent the dimensionless concentration of oxygen, glucose and 
gluconic acid. α, β and γ are dimensionless constant.  are the Thiele modulus for the oxygen 
and glucose. Now the boundary conditions reduces to 

;1)( =χu   1)( =χv ;  0)( =χw  at 0=χ  and  1=χ 			   (2.12)

	 The dimensionless concentration of oxygen ;1)( =χu , glucose v  and gluconic acid w  are all 
related processes. On simplifying equations (2.9) and (2.10) we get, 

2

2
2 1

2u(χ) γv(χ)- =0
χ μ μ

 ∂
 ∂  

						      (2.13)

Integrating equation (2.13), using the boundary conditions (equation (2.12)) we get, 

[ ]1

2

2μ u (χ)-1
v (χ)=1+

γ μ
							       (2.14)

On simplifying equations (2.10) and (2.11) we get, 

0))( )( (
2

2

=
∂
+∂
χ

χχ wv 								       (2.15)

	 Integrating equation (2.15) and using the boundary conditions (equation. (2.12)) we 
get, 

v (χ)+w (χ)=1								        (2.16)

(2.8)

(2.9)

(2.10)

(2.11)
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	 So we wish to obtain an analytical expression for the concentration profile u(𝑥) of oxygen. 
From this concentration profile one can obtain the concentration of glucose v(𝑥) and gluconic 
acid w(𝑥). 

2.3. Approximate analytical solutions

2.3.1 Homotopy analysis method (HAM)

	 The Homotopy analysis method (HAM) [19–22] is a general analytic approach to 
get series solutions of various types of non-linear equations. More importantly, this method 
provides us a simple way to ensure the convergence of solution series. The HAM gives us with 
great freedom to choose proper base functions to approximate a non-linear problem. Since 
Liao’s book [23] for the Homotopy analysis method was published in 2003, more and more 
researchers have been successfully applying this method to various non-linear problems [24] in 
science and engineering. We have solved the non-linear problem using this method. The basic 
concept of the method is described in Appendix 2.A. Detailed derivation of the dimensionless 
concentration of oxygen, glucose and gluconic acid are described in Appendix 2.B. 

2.3.2. Solution of boundary value problem 

	 Solution of the system of three non-linear differential equations, (Equations (2.9) - 
(2.11)) with boundary conditions (Equation (2.12)) give a concentration profile of each species 
within the membrane.
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
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(2.19)
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µ
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	 Here h is the convergence control parameter. Equations (2.17) - (2.19) represent the 
analytical expression of the concentration of oxygen u(𝑥), glucose v(𝑥) and gluconic acid w(𝑥) 
respectively.

	 Here h is the convergence control parameter. Equations (2.17) - (2.19) represent the 
analytical expression of the concentration of oxygen u(𝑥), glucose v(𝑥) and gluconic acid w(𝑥) 
respectively.

2.4 Discussion

	 The non-linear equations (2.9) – (2.11) are also solved by numerical methods using 
Scilab/Matlab program. The function pdex4 is used for solving the initial-boundary value 
problems for parabolic-elliptic partial differential equations. The obtained analytical results 
are compared with the numerical results for various values of α, β, γ, μ1 and μ2. All possible 
numerical values of the dimensionless parameters used in Wu et.al [18] and in this work are 
given in (Table 2.1.)

	 This numerical solution is compared with our analytical results in figures 2.1-2.3 and 
Table 2.3. The average relative error between our analytical result (equation 2.17) and the nu-
merical result of oxygen concentration ∈ is less than 0.8% for various values of μ1 and μ2. The 
experimental value of the parameters α and β are very small. Since the numerical value of γ  
is 20, the value of 1M  and 2M  becomes very small. In this case the equation. (2.17) becomes  

               ( ) ( )χµχµχ 2/sinh2/cosh)( 22 Bu +≈ . 

	 (Figure 2.1) presents the analytical and numerical concentration profiles of oxygen u, 
glucose v and gluconic acid w for the values of the parameters taken in Wu et al [18]. Figures 
2.2 and 2.3 illustrate the concentration profiles of oxygen u , glucose v , and gluconic acid 
w  for various values of μ1 and μ2. In all the cases the concentration of oxygen u(𝑥), glucose 
v(𝑥)  are decreases and gluconic acid w(𝑥) increases with the increasing value of parameters 
μ1 and μ2. The concentration of oxygen and glucose decreases within the enzyme matrix from 
both interfaces ( 0=χ  and 1=χ ), reaching a minimum value at a distance ( 1=χ ) within the 
membrane which is determined by the kinetics of the enzyme reaction and the diffusion prop-
erties of the reactants. The concentrations of gluconic acid w increases from both interfaces 
and reaching a maximum value at the middle of the membrane.

(2.20)



Table 2.1: Numerical values for dimensionless parameters used in this work. The fixed values of the dimensional parameters used 
in Wu et al. [18] are , , , ,  ,  and . 3

g mol/cm k 710187.6 −×= 3*
g mol/cm C 6105.5 −×=

3*
OX mol/cm C 610274.0 −×= 3-1

m a x mo l/cm s  2 15 0v 910−×= /seccm D 2
OX

51029.2 −×=

/seccm D 261075.6 −×= cm10 2−=l

Parameters Wu et.al  [18
This work

Fig.2. 1 Fig.2. 2 Fig.2. 3

8.84x10-5 8.84 𝑥 10-5 0.1 0.1

7.87x10-4 7.87 𝑥 10-5 0.5 0.5

20.0 20.07 5 5

4.55x10-3 4.5 𝑥 10-3 50 0.1-100

1.3x10-3 1.3 𝑥 10-3 50 0.1-100

16
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Figures 2.1: Dimensionless concentration profiles of oxygen A  and glucose x , against the dimensionless distance 𝑥 
for  α= 8.84 × 10-5, β = 7.87 × 10-4, γ = 20.07, μ1 = 4.55 × 10-3, μ2 = 103 × 10-3 and η = -0.8. solid lines present the analytical 
solution whereas the dotted lines for the numerical solution.

Figures 2.2: Dimensionless concentration profiles of oxygen u , glucose v , and gluconic acid w  against the dimen-
sionless distance 𝑥 for α= 0.1, β = 0.5, γ = 5, μ1 =  μ2 = 50 and η = -0.86. Solid lines represent the analytical solution whereas 
the dotted lines for the numerical solution.

(A) (B) (C)

Figure 2.3: Dimensionless concentration profiles of oxygen (A)u , glucose )(Bv , and gluconic acid )(Cw  against 
the dimensionless distance 𝑥 for (a) μ1 = μ2 = 0.1, η = - 0.55 (b) μ1 = μ2 = 1, η = -0.559, (c) μ1 = μ2 = 5, η = -0.62, (d) μ1 = μ2 
= 10, η = -0.675, (e) μ1 = μ2 = 20, η = -0.74 (f) μ1 = μ2 = 50, η = -0.8 (g) μ1 = μ2 = 100, η = -0.799.

2.5. Conclusions 

	 A non-linear time independent equation has been solved analytically using homotopy 
analysis method. The primary result of this work is the first approximate calculations 
concentrations of oxygen, glucose and gluconic acid for diffusion reaction at the steady state. A 
simple closed form of analytical expression of concentration of oxygen, glucose and gluconic 
acid are given in terms of parameters. The analytical results can be used to analyze the effect 
of different parameters and optimization of the design of glucose membrane.
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2.6. Appendix 2.A:

Basic idea of Liao’s Homotopy analysis method

	 Consider the following differential equation [23]:

0)]([ =χuN 							          			             (2.A1)

	 Where, Ν is a nonlinear operator, 𝑥 denotes an independent variable, u(𝑥) is an unknown 
function. For simplicity, we ignore all boundary or initial conditions, which can be treated 
in the similar way. By means of generalizing the conventional homotopy method, Liao con-
structed the so-called zero-order deformation equation as:

)];([)()]();([)1( 0 pNphHupLp χϕχχχϕ =−− 	     				    (2.A2)

	 Where p∈ [0,1] is the embedding parameter, h ≠ 0 is a nonzero auxiliary parameter, H(
χ ) ≠ 0 is an auxiliary function, L is an auxiliary linear operator, 0u  ( χ ) is an initial guess of u(
χ ) and φ ):( pχϕ    is an unknown function. It is important, that one has great freedom to choose 
auxiliary unknowns in HAM. Obviously, when 0=p  and 1=p , it holds:

)()0;( 0 χχϕ u= and )()1;( χχϕ u= 			      				              (2.A3)

	 respectively. Thus, as p increases from 0 to 1, the solution );( pχϕ varies from the ini-
tial guess )(0 χu  to the solution u( 2 ). Expanding );( pχϕ  in Taylor series with respect to p, we 
have:

∑
+∞

=
+=

10 )()();(
m

m

m puup χχχϕ 					      			   (2.A4)

where 

0|);(
!

1)( =∂
∂

= pm

m

m p
p

m
u χϕχ 								                  (2.A5)

	 If the auxiliary linear operator, the initial guess, the auxiliary parameter h, and the 
auxiliary function are so properly chosen, the series (2.A4) converges at p = 1 then we have:

∑
+∞

=
+=

10 )()()(
m muuu χχχ .					         			             (2.A6)

Define the vector

},...,,{ 10 nn uuuu =
→

						          			             (2.A7)

	 Differentiating equation (2.A2) for m times with respect to the embedding parameter p, 
and then setting p = 0 and finally dividing them by m!, we will have the so-called mth-order 
deformation equation as:



http://openaccessebooks.com/

20

)()(][ 11 −

→

− ℜ=− mmmmm uhHuuL χχ 			         				              (2.A8)

where 
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			    				     (2.A9)

and





>
≤

=
 .1   1,

,1  ,0
m
m

mχ 		        							               (2.A10)

Applying 1−L  on both side of equation (2.A8), we get

)]()([)()( 1

1

1

→

−

−

− ℜ+= mmmmm uHhLuu χχχχ 						              (2.A11)

In this way, it is easily to obtain mu  for ,1≥m  at thM  order, we have

∑
=

= M

m muu
0

)()( χχ

	 When +∞→M , we get an accurate approximation of the original equation (2.A1). For 
the convergence of the above method we refer the reader to Liao [25]. If equation (2.A1) ad-
mits unique solution, then this method will produce the unique solution. If equation (2.A1) 
does not possess unique solution, the HAM will give a solution among many other (possible) 
solutions.

2.7 Appendix 2.B:

Approximate analytical solutions of the equation (2.9)

	 Substituting equation (2.14) in equation. (2.9) and simplifying we get, 

{ } (2.B1)                      02)(2)(
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	 In order to solve equation (2.B1) by means of the HAM, we first construct the zeroth-
order deformation equation by taking 1)( =χH ,
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	 where p∈ [0,1] is an embedding parameter. When 0=p , the above equation becomes,

0
2 0

2

2

0

2

=−
∂
∂ ϕµ
χ
ϕ                                						           (2.B3)

	 Solving equation. (2.B3) and using the boundary condition 

1);0(0 =pϕ  and 1);1(0 =pϕ 	              						           (2.B4)
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we get 

( ) ( )χµχµχϕ 2/sinh2/cosh)( 220 B+=          						       (2.B5)

where 
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( )2/sinh
2/cosh1
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2

µ
µ−

=B

	 When 1=p  the equation. (2.B2) is equivalent to equation. (2.B1), thus it holds. 

)()1;( χχϕ u=                                 							        (2.B6)

Expanding );( pχϕ  in Taylor series with respect to the embedding parameter p, we have,
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	 and   )(χmu  1,2,...][ =m  will be determined later. Note that the above series contains the 
convergence control parameter h. Assuming that h is chosen so properly that the above series 
is convergent at 1=p . We have the solution series as

)()()1;()(
10 χχχϕχ ∑
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=
+==

m muuu                 						                 (2.B10)

	 Substituting (2.B10) into the zeroth-order deformation equations (2.B7) and (2.B8) 
equating the co-efficient of p we have,
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	 Solving equation (2.B11) and using the boundary conditions 0)1(  and ,0)0( 11 == ϕϕ , we 
get 
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	 Adding equations (2.B5) and (2.B12) we obtain the final results as described in equation 
(2.17) in the text.

2.8 Appendix 2.C:

(2.B12)
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Scilab / Matlab program 

	 A SCILAB/MATLAB program for the numerical solution of the system of non-linear 
second order differential equations (2.9)-(2.11)

function pdex4 
m = 0; 
x=linspace(0,1); 
t=linspace(0,100000); 
sol=pdepe(m,@pdex4pde,@pdex4ic,@pdex4bc,x,t); 
u1=sol(:,:,1); 
u2=sol(:,:,2); 
u3=sol(:,:,3); 
figure 
plot(x,u1(end,:)) 
title(‚u1 (x,t)‘) 
xlabel(‚Distance x‘) 
ylabel(‚u1 (x,2)‘) 
%------------------------------------------------------------------ 
figure 
plot(x,u2(end,:)) 
title(‚u2 (x,t)‘) 
xlabel(‚Distance x‘) 
ylabel(‚u2 (x,2)‘) 
% -------------------------------------------------------------- 
figure 
plot(x,u3(end,:)) 
title(‚u3 (x,t)‘) 
xlabel(‚Distance x‘) 
ylabel(‚u3 (x,2)‘) 
% --------------------------------------------------------------  
function [c,f,s] = pdex4pde(x,t,u,DuDx) 
c = [1; 1; 1];  
f = [1; 1; 1] .* DuDx;  
a=0.5; 
b=5; 
y=5; 
u2=0.1; 
u1=5; 
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F=-u2*u (1)/(2*(a/y*u(1)/u(2)+b/y*u(1)+1)); 
F1=-u1*u (1)/(y*(a/y*u(1)/u(2)+b/y*u(1)+1));

F2=u1*u (1)/(y*(a/y*u(1)/u(2)+b/y*u(1)+1)); 
s=[F; F1; F2]; 
% -------------------------------------------------------------- 
function u0 = pdex4ic(x);  
u0 = [0; 1; 0];  
% -------------------------------------------------------------- 
function [pl,ql,pr,qr]=pdex4bc(xl,ul,xr,ur,t) 
pl = [ul(1)-1; ul(2)-1; ul(3)];  
ql = [0; 0; 0]; 
pr = [ur(1)-1; ur(2)-1; ur(3)]; 
qr = [0; 0; 0];
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Chapter 3

3.1. Introduction

	 Immobilization of enzymes helps in their economic reuse and in the development of 
continuous bioprocesses. Enzymes can be immobilized either using the isolated enzymes or 
the whole cells. Immobilization often stabilizes structure of the enzymes, thereby allowing 
their applications even under harsh environmental conditions of pH, temperature and organic 
solvents, and thus enables their uses at high temperatures in nonaqueous enzymology, and in 
the fabrication of biosensor probes. In the future, development of techniques for the immobili-
zation of multienzymes along with cofactor regeneration and retention system can be gainfully 
exploited in developing biochemical processes involving complex chemical conversions. 

	 The internal diffusional effects can be quantitatively expressed by the effectiveness fac-
tor η. The effectiveness factor is defined as the ratio of the actual reaction rate inside the particle 
to the rate in the absence of diffusional limitations [1]. The analytical solution for first-order 
kinetics, which provides the effectiveness factor value as a hyperbolic function of the Thiele 
modulus, is well known. For simple Michaelis-Menten kineties, a two-parameter model pro-
viding generalized plots of the effectiveness factor as a function of the dimensionless moduli 
[2, 3]. Immobilized enzyme systems are also analyzed for more complex kinetics: reversible 
reactions [4], competitive Michaelis-Menten kinetics [5] or two-substrate enzymatic reactions 
[6]. 

	 Analytical solutions have been obtained in the limiting cases of zero and first reaction 
order [7]. For the remaining, numerical calculus has been ordinarily used, being the differ-
ent variables of the system expressed in dimensionless form [8-15]. But, since the calculus 
complexity increases as the reaction mechanism becomes more complex. When reversible or 
product competitive inhibition mechanisms have been considered, only external diffusional 
limitations [16] have been evaluated, otherwise unsatisfactory results were obtained [17-19].

	 Most theoretical models developed for estimating the effectiveness factor for heteroge-
neous enzymatic systems are based on the following assumptions: The catalytic particle is a 
porous sphere with a radius R . The enzyme is uniformly distributed throughout the whole cata-
lytic particle. Diffusion reaction takes place at a constant temperature and under steady-state 
conditions. The substrate and product diffusion inside the catalytic particle can be modeled 
by Fick’s first law and effective diffusivity is the same throughout the particle. The enzymatic 
reaction is monosubstrate and yields only one product.

Boundary Vale Problems and Immobilized Enzymes with Reversible Michaelis Menten 
Kinetics
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Most previously published enzymatic kinetic models involve non-reversible Michaelis -Ment-
en kinetics, and are solved by numerical calculus. Among these models, some of the most 
relevant are those proposed by Engasser and Horvath [2], for a simple Michaelis-Menten ki-
netics, modified by Tuncel [3]; The solution developed by Xiu et al. [5] for product competi-
tive inhibition kinetics; or the two-substrate model invented by [6]. The first model has been 
successfully applied in the design of heterogeneous enzymatic reactors: fixed bed reactors 
[20], continuous tank reactors [21] and fluidized bed reactors [22]. Recently the methodology 
used in these papers has been applied to the simulation of a packed bed immobilized enzyme 
reactor [23,24]. 

	 However, approximate analytical solutions, valid only in a limited range of the param-
eters, have also been published [25-27]. Several numerical methods have been used to solve 
the boundary value problems outlined in equation (3.1) and (3.2). The most frequently used 
are finite differences [28] and orthogonal collocation [29], which transforms the problem into 
a system of algebraic equations. Recently, Chen et al. [30, 31] developed the two-dimensional 
flow model, incorporating mass transport to simulate a microchannel enzyme reactor with a 
porous wall using finite volume method. However, to the best of our knowledge, there was no 
rigorous solution for the substrate concentration has been reported. The purpose of this chapter 
is to derive simple analytical expression for concentration and effectiveness factor for all pos-
sible values of reaction/diffusion parameters ϕ and α.

3.2. Mathematical formulation of the problem and analysis

	 The mathematical models for estimating the effectiveness factor in heterogeneous en-
zymatic systems are based on the following assumptions: (i) The catalytic particle is spherical 
and its radius is R . (ii) The enzyme is uniformly distributed throughout the whole catalytic 
particle. (iii) The system is in a steady-state and isothermal. Under these above assumptions, 
the differential mass balance equation for substrate and product in spherical co-ordinates are 
as follows [33]:
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The boundary conditions are

0  ;0 ==
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dC PS  when 0=r                                                                                     	     (3.3)
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and 
SC  and 

SC  denote the dimensional substrate and product concentration, r is the radial co-
ordinate. The form of SV  determines the mathematical method to solve the above equations 
and its complexity. Most of the already published articles on enzymatic solution were dealt 
with non-reversible Michaelis-Menten kinetics. The present model is an improvement based 
on the previously formulated three parameter model [32], since only two parameters are neces-
sary to reach the solution. Adding equations (3.1) and (3.2) and using the boundary conditions 
the following relationship can be established:
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	 Where SEC  and PEC  are the equilibrium substrate and product concentration. We make 
the non-linear differential equations outlined in equation (3.1) and (3.2) in dimensionless form 
by introducing the following dimensionless parameters:
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	 The mass balance differential equation for substrate in spherical co-ordinates for two 
parameter model is [33]:
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	 where S  is the substrate concentration and ρ is the dimensionless particle radial coordi-
nate and ϕ and α are the dimensionless modules. The boundary conditions are represented as 
follows:

0=
ρd

dS  when   ρ = 0                                 (3.11)                                                           1=S

when  ρ = 1                                                                                                                    (3.12)

The effectiveness factor can be evaluated as [33]:  
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3.3. General result for concentration S  and effectiveness factor η

	 The Homotopy perturbation method [34-40] is used to give the approximate analytical 
solution of non-linear reaction/diffusion equation (3.10). Using this method (see Appendix 
–3.A, 3.B and 3.C) we can obtain the concentration of substrate as follows:
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	 The equation (3.14) satisfies the boundary conditions (3.11) and (3.12). This equation 
represents the analytical expression of concentration provided 
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	 equation. (3.13) represents the new approximate analytical expression for the effective-
ness factor for all values of parameter α and ϕ provided 0≠A  and 
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3.4. Numerical simulation

	 The non-linear differential equation (3.10) is solved by numerical methods. The func-
tion pdex4 in SCILAB software which is a function of solving the boundary value problems 
for ordinary differential equation is used to solve this equation. Its numerical solution is com-
pared with Homotopy perturbation method in figures and it gives a satisfactory result when α 
>10. 

3.5. Discussion

3.5.1. Effect of Thiele modulus ϕ in concentration of substrate

The Thiele modulus ϕ can be varied by changing either the particle radius or the amount of con-
centration of substrate. This parameter describes the relative importance of diffusion and reac-
tion in the particle radius. When ϕ is small, the kinetics are the determining factor; the overall 
uptake of substrate in the enzyme matrix is kinetically controlled. Under these conditions, the 
substrate concentration profile across the membrane is essentially uniform. In contrast, when 
the Thiele modulus is large, diffusion limitations are the principal determining factor.          

	 (Figures 3.1 – 3.2) show the dimensionless steady-state substrate concentration for the 
different values of ϕ calculated using equation (3.12). From these figures, we can see that 
the value of the concentration increases when ϕ decreases. The concentration of substrate S 
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increases slowly and rises abruptly when  and all values of ϕ. When ϕ < 1 and α < 5, the con-
centration of substrate 1≈S (steady-state value). The simulation result is compared with our 
simple closed analytical expression equation (3.14), in Tables 3.1. The average relative differ-
ence between our equation (3.14) and the simulation result is less than 0.5 % when α = 2.

3.5.2. Effect of dimensionless module α in concentration

	 The dimensionless module α is parameter quantifying the degree of unsaturation/satura-
tion of the catalytic kinetics since it describes the ratio of the substrate concentration within 
the film to Michaelis –Menten constant. When α << 1, and so the kinetics are unsaturated (first 
order with respect to substrate concentration S ). Alternatively, when α << 1, and the catalytic 
kinetics are saturated (zero order with respect to substrate concentration S ). Figures 3.3 to 3.4 
show the dimensionless steady-state substrate concentration for the different values of α. From 
these figures, we can see that the value of the concentration increases when α increases for all 
values of ϕ. 

3.5.3. Effectiveness factor η

	 Effectiveness is an important concept in immobilized enzyme system. Figures 3.5 rep-
resents the effectiveness factor η versus dimensionless module η for different values of di-
mensionless module α. From this figure, it is inferred that, a constant value of dimensionless 
module α, the effectiveness factor η decreases quite rapidly as dimensionless module ϕ in-
creases, approaching zero at high ϕ values, which corresponds to internal diffusion controlled 
processes. Moreover, it is also well known that, a constant value of dimensionless module ϕ, 
the effectiveness factor η increases with increasing values of α.

Table 3.1: Comparison of concentration profile of substrate A for various values of ϕ using equations (14) and simu-
lation result when dimensionless module (α = 2).

ρ

Concentration of S

A (when ϕ = 0.1) S  (when ϕ = 5) S  (when ϕ = 20)

Si
m

ul
at

io
n

This work
Eq. (3.14)

% of 
deviation

Si
m

ul
at

io
n

This work
Eq. (3.14)

% of 
deviation

Si
m

ul
at

io
n

This work
Eq. (3.14)

% of 
deviation

0 0.9900 0.9917 0.1714 0.6452 0.6441 0.0912 0.3051 0.3056 0.1636

0.2 0.9915 0.9920 0.0504 0.6570 0.6576 0.0912 0.3173 0.3176 0.0945

0.4 0.9935 0.9950 0.1508 0.6980 0.6986 0.0859 0.3600 0.3621 0.5799

0.6 0.9955 0.9958 0.0301 0.7679 0.7688 0.1171 0.4561 0.4568 0.1532

0.8 0.9968 0.9970 0.0201 0.8641 0.8647 0.0694 0.6514 0.6646 1.9862

1 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000

Average 0.0705 Average 0.0758 Average 0.4962
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Figure 3.1: Influence of dimensionless module ϕ on the concentration profile of substrate S  obtained from our approxi-
mate solution presented in this work (equation (3.14), solid line) and from the simulation result (plus line). The plot was 
constructed for α = 2 .

Figure 3.2: Influence of dimensionless module ϕ on the concentration profile of substrate S  obtained from our approxi-
mate solution presented in this work (equation (3.14), solid line) and from the simulation result (plus line). The plot was 
constructed for α = 5.

Figure 3.3: Influence of dimensionless module α on the concentration profile of substrate S  obtained from our approxi-
mate solution presented in this work (equation (3.14) solid line) and from the simulation result (plus line). The plot was 
constructed for ϕ = 2.
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Figure 3.4: Influence of dimensionless module α on the concentration profile of substrate S  obtained from our approxi-
mate solution presented in this work (equation (3.14), solid line) andfrom the simulation result (plus line). The plot was 
constructed for ϕ = 5.

Figure 3. 5: Influence of dimensionless module α on effectiveness factor η obtained from our approximate solution 
presented in this work (equation (3.15), solid line) and from the simulation result (dotted line).

3.6. Conclusions

	 The time independent non-linear reaction/diffusion equation in immobilized enzyme 
system has been formulated and solved analytically. An approximate analytical expression for 
the concentration and effectiveness factor under steady state conditions are obtained by using 
the Homotopy perturbation method. The primary results of our work were simple approximate 
calculation of concentration and effectiveness factor for all values of parameters ϕ and α. This 
method can be applied to find the solution of all other non-linear reaction diffusion equations 
in immobilized enzymes for various complex boundary conditions.

3.7 Appendix 3.A

Basic concept of the Homotopy perturbation method (HPM)

	 We outline the basic idea of Homotopy perturbation method. This method has eliminated the 
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limitations of the traditional perturbation methods. On the other hand it can take full advantage 
of the traditional perturbation techniques, so there has been a considerable deal of research in 
applying homotopy technique for solving various strongly non-linear equations. To explain 
this method, let us consider the following function 

          r      ,0)()( Ω∈=− rfuA        	        				      (3.A1)

with the boundary conditions of 

                                                               ,0)u ,( Γ∈=
∂
∂ r
n

uB                            (3.A2)   

	 where A , B , )(rf and  Γ  denote a general differential operator, a boundary operator, a 
known analytical function and the boundary of the domain Ω , respectively. Generally speak-
ing, the operator A  can be divided into a linear part L  and a non-linear part N. equation (3.10) 
can therefore be written as 

                                           0)()()( =−+ rfuNuL                                                 (3.A3)

	 By the homotopy perturbation technique, we construct a homotopy Rprv →×Ω ]1,0[:),(  
which satisfies

     ],1,0[            .0)]()([)]()()[1(),( 0 Ω∈∈=−+−−= rprfvApuLvLppvH         (3.A4)

or

                         .0)]()([)()()(),( 00 =−++−= rfvNpupLuLvLpvH                               	 (3.A5)

	 where ]1,0[∈p  is an embedding parameter, and 0u  is an initial approximation of equation 
(3.A1) which satisfies the boundary conditions. Obviously from equations (3.A4) and (3.A5), 
we will have

                                                        0)()()0,( 0 =−= uLvLvH                                           (3.A6)

               .0)()()1,( =−= rfvAvH 							                    (3.A7)

	 when 0=p  equation (3.A4) or equation (3.A5) becomes a linear equation; when 1=p  
it becomes a non-linear equation. So the changing process of p from zero to unity is just that 
of 0)()( 0 =− uLvL  to 0)()( =− rfvA . We can first use the embedding parameter p  as a “small 
parameter”, and assume that the solutions of equations (3.A4) and (3.A5) can be written as a 
power series in p

                                                                                      .....2
2

10 +++= vppvvv 	              			   (3.A8)

	 Setting 1=p , results in the approximate solution of equation (3.A1):
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	 The combination of the perturbation method and the Homotopy method is called the 
Homotopy perturbation method. 

3.8. Appendix 3.B 

Solution of the equation (3.10) using Homotopy perturbation method.

	 In this appendix, we indicate how equation (3.14) in this paper is derived. To find the 
solution of equation (3.10), we first construct a Homotopy as follows:
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 and the initial approximations are as follows:
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	 Substituting equation (3.B6) into equation (3.B1) and arranging the like coefficients of 
powers p , we can obtain the following differential equations

                                                              

                                         

                                                                                    

	

	 Solving equation (3.B7) to (3.B9) using reduction of order (see Appendix 3.C) for 
solving the equation (3B8), and using the boundary conditions (3.B4) to (3.B5), we can find 
the following results
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	 According to the HPM, we can conclude that
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	 After putting equations (3.B10), (3.B11) and (3.B12) into equqtion (3.B13). The final 
results can be described in equation (3.5) in the text. The remaining components of )(xun  and 

)(xvn  be completely determined such that each term is determined by the previous term.

3.8. Appendix 3.C

	 In this appendix, we derive the solution of equation (3.B8) by using the reduction of 
order. The equation (3.B8) can be written in the form: 
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Let the solution of equation (3.C1) be 
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Substituting equation (3.C3) in (3.C1), we get
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	 Now to remove the first derivative, we can choose the coefficient of the first derivative 
in equation (3.C4) is zero ( )01 =P . We have  

0
d
d2

=+ Pc
c ρ                                                                                                         		  (3.C6)

Solving equation (3.C6), we can obtain c as follows:

ρ
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Now the given equation (3.C4) reduces to
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Substituting the value of 1Q  and 2U  in equation (3.C8) we obtain, 

α
φ xv  ' ' =                                                                                                                   	 (3.C9)     

Solving the above equation (3.C9), we get

α
ρφρ

6
   

3

++= BAv                                                                                                        (3.C10)   

 Substituting (3.C7) and (3.C10) in (3.C3), we have

α
ρφ

ρ 6
   

2

1 ++=
BAu                                                                                                        (3.C11)     

            Using the boundary conditions (equations (3.B4) and (3.B5)), we can obtain the value of 
the constants A and B. Substituting the value of the constants A and B in the equation (3.C11) 
we obtain the equation (3.B11). Similarly we can solve the other differential equation. (3.B9), 
using the reduction of order method.

3.9. Appendix 3.D

NOMENCLATURE

Symbol Meaning Usual dimension

PC Product concentration inside the spherical particle Mole/cm 3

PEC Equilibrium product concentration Mole/cm 3

PRC local product concentration at particle surface Mole/cm 3

SC Substrate concentration inside the spherical particle Mole/cm 3

SEC Equilibrium substrate concentration Mole/cm 3

SRC local substrate concentration at particle surface Mole/cm 3

PD Effective product diffusivity inside the particle Cm 2 sec 1−

SD Effective substrate diffusivity inside the particle Cm 2 sec 1−

eqK equilibrium constant None

MK Michaelis constant Mole/cm 3

PK Competitive product inhibition constant None

r radial coordinate of the particle Cm

R radius of the particle Cm

S
dimensionless substrate concentration, defined as SRS CC  for 
the two-parameters model Mole/cm 3

mV maximum reaction rate per unit of catalytic particle volume Mole/cm 3 sec
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4. Solution of non-linear boundary value problems in immobilized glucoamylase kinetics

4.1. Introduction

	 Flow reaction calorimetry has several advantages over a batch calorimetry method. 
The operation at a calorimetric experiment can be made exceedingly simple and equilibration 
time prior to the experiment can be omitted. Mixing of reactants can be achieved without the 
presence of a gaseous phase which is of great importance when experiments are performed 
with volatile liquids and in micro-calorimetric expriments where very small condensation- 
evaporation effects may affect the result. Surface adsorption effects which may cause seious 
systematic errors in micro calorimetry can be neglected if a steady liquid flow is allowed to 
continue until possible wall reactions have occurred [1]. Immobilized biocatalysts (IMB)-
enzymes or whole cells- are used in various areas of analytical, medical, and industrial 
applications. Basically, enzyme kinetic parameters cannot be determined experimental data. 
For this purpose many experimental techniques can be used, that are more or less laborious 
and time consuming. Reaction kinetics of carboxyl esterase’s depends strongly on the nature 
of substrate. The hydrolysis of different substrate activation [2] or it can follow the simple 
Michaelis-Menten kinetics [3].  

	 Stefuca et al. [4] have described the principles and applications of flow calorimetry (FC) 
in the investigation of the IMB properties. One of the last improvements of this technique was 
the introduction of an “auto calibration” principle based on reaction solution recirculation 
enabling to determine true reaction rate of biocatalyst reaction without any requirement of an 
additional analytical technique [5]. Vladimir Stefuca et al. [6] have derived the experimental 
data were treated by mathematical modelling based on material and heat balances of the 
reaction system. Recently, Fedor Malik [7] has developed the mathematical model describing 
the enzyme reaction, mass transfer and heat effects in the calorimetric system.  

	 To my knowledge no rigorous analytical solutions of the substrate of phenyl acetate hy-
drolysis with steady-state conditions for all values of parameters α, β and γE have been report-
ed. The purpose of this chapter is to derive approximate analytical expressions for the steady-
state concentration of substrate using Adomian decomposition method, Homotopy analysis 
and perturbation method.

4.2. Mathematical formulation of the problem

	 The experimental set- up used for the capacity is depicted in (figure.4.1). The main part 

Non-linear boundary value problems in immobilized glucoamylase 
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of the system thermostatic cell through immobilized enzyme column. The column was oper-
ated packed bed reactor. The temperature difference between the column input and output T∆

, is measured by thermistors and registered by a personal computer. The system was kept at 
temperature of 303.15K, while the buffer solution was continuously pumped through the col-
umn with constant flow rate of 1ml/min.

Figure 4.1: Experimental set-up of flow calorimetry.

	 The experiment was started by replacing the buffer solution by the substrate solution 
containing 1-200 g/l of MDX in 0.1 M acetate buffer (pH 4.7). Two techniques of measurement 
were applied: single flow mode and total recirculation mode. The single flow mode was 
performed with the switching valve 2 opened to the waste [7]. The substrate concentration 
gradient on the particle surface was calculated by the equation of substrate balance in the 
particle [7]:
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	 The equation must be solved subject to the following initial and boundary conditions:  

0=SPc    at    ,10,0 ≤≤= rt                                                                                           (4.2)

0=
dr

dcSP

 
at ,0=r                                                                                                           (4.3)                                                                                                                   

SSP cc =  at ,pRr =                                                                                                       (4.4)

	 Where SPc  is the substrate concentration in the particle, Sc  is the phenyl acetate con-
centration, eD  is the diffusion coefficient, imm KKV ,,  are the kinetic parameters and r  is the 
particle radial co-ordinate, nA  is the particle radius. We can write the steady state equation as 
[7]:
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	 The system governs the substrate concentration SPc  when there is no competitive inhibi-
tion in the reaction. The non-linear ODE (equation (4.5)) is made dimensionless by defining 
the following parameters: 
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       	 Where Eγ  denote the reaction diffusion parameter, x  is the dimensionless distance and 

)(xU  is the dimensionless concentration. Here α and β denotes the saturation parameters. The 
above equation (4.5) reduces to the following dimensionless form
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The corresponding boundary conditions are
11 == x at  U

                                                                                                                       (4.8)
0at   0 == x

dx
dU

                                                                                                                 (4.9)

4.3. Solution of boundary value problem using Adomian decomposition method	

	 Adomian’s decomposition method has been successfully applied to linear and nonlinear 
problems.One of its advantages is that it provides a rapid convergent solution series [8].

	 However, the method applied to nonlinear equations does not seem to be fast enough to be 
a efficient method to solve these kind of equations and one can find in the open literature some 
modifications proposed by several authors [9-13]. By applying the Adomian’s decomposition 
method, a new iterative method to compute nonlinear equations is developed and is presented 
in this work. The Adomian decomposition method is an extremely simple method [9-13] to 
solve the non-linear differential equations. First iteration is enough. Furthermore, the obtained 
result is of high accuracy. Using this Adomian decomposition method (see appendix 4.A and 
4.B), the solution of equation (4.7) becomes:
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4.4. Solution of boundary value problem using Homotopy analysis method

	 Perturbation methods are the most famous analytic techniques for nonlinear problems, 
which are widely applied in science and engineering. In 1992, the Homotopy, a traditional 
concept in topology, was used by Liao [14] to propose an approximation technique for nonlinear 
problems, namely the homotopy analysis method (HAM). Using the concept of the Homotopy, 
a nonlinear problem is transformed into a sequence of linear sub-problems that are easy to 
solve by means of the symbolic computation software. In 1997 Liao [14] further generalized 
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the HAM by introducing an auxiliary nonzero parameter (called today the convergence-control 
parameter). Different from perturbation techniques, the HAM does not depend upon any small 
physical parameters, and besides provides great freedom to choose different base functions to 
approximate nonlinear problems. Especially, different from all other analytic approximation 
methods, the so-called convergence-control parameter of the HAM provides us a convenient 
way to ensure the convergence of series solution. Thus, the HAM overcomes the restrictions 
of the perturbation methods and therefore is more general. With these advantages and having 
the aid of high-performance computer and symbolic computation software, the HAM has been 
widely applied to solve many types of nonlinear differential equations in science, engineering 
and finance [15]. Using this HAM (see appendix 2.A and 4.C) we obtain, the concentration of 
substate as follows: 
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Figure.4.9: The h curves indicate the convergence region, for α = 0.5, β = 0.3 and γE = 0.5 

4.5. Solution of boundary value problem using Homotopy perturbation method

	 The Homotopy perturbation method which doesn't need small parameter is implement-
ed for solving the differential equations and it is predicted that HPM can be founded widely 
applicable in engineering and in cases that don’t have exact solution this method can be used 
as semi-exact solution. Homotopy perturbation method yields a very rapid convergence and 
usually, one iteration leads to high accuracy of solution [17-25]. The Homotopy perturbation 
method is a high accuracy method. Using this method (see appendix 3.A and 4.D) we obtain
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4.6. Numerical simulation

	 The non-linear differentials equations (4.7 - 4.9) are also solved by numerical methods. 
The function bvp4c in Matlab software which is a function of solving two-point boundary 
value problems (BVPs) for ordinary differential equations is used to solve this equation. The 
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Matlab program is also given in appendix G. Its numerical solution is compared with Adomian 
decomposition method, Homotopy analysis and perturbation method in Table 4.2-4.5 and it 
gives satisfactory result when α≤1 and β≤1. 

4.7. Results and discussion

	 The primary result of this work is the first approximate and simple expression of con-
centrations of substrate (equations (4.10) (ADM), (4.11) (HAM) and (4.12) (HPM)). figures. 
4..2-4.5 show the analytical expression of concentration of substrate )(xU  for various values 
of dimensionless reaction diffusion parameter γE and saturation parameters α, β. From these 
figures.4.2-4.5, it is inferred that the value of the concentration of substrate )(xU  increases 
when dimensionless reaction diffusion parameter γE decreases. Also in these figures 4.2 to 4.5, 
it is known that the value of the concentration of substrate increases gradually and attains the 
maximum at the boundary 𝑥 = 1).

	 The normalized numerical simulation of three dimensional substrate concentrations 
)(xu  is shown in figures. 4.6-4.8. The time independent concentration )(xg  is represented in 

figures 4.6-4.8 for fixed value of 001.0=β  . Concentration )(yN  is slowly decreasing when γE 
is increasing. Then the concentration of )(xu =1 when 1=x  and also for all values of γE, α and  
β. In these figure, it should be noted that the value of the concentration of substrate decreases 
for all values of γE. From this Figures, it is apparent that the value of the concentration of sub-
strate increases for various values of α increases.

Table 4.1: Numerical values of the parameters used in this work. The fixed values of the dimension parameters are

  , , mK1.11,7.13=mV and 001.0=pR . These are dimensional parameters used in Fedor Malik et al. [7].Q

Parameter Unit
Numerical value of 

parameter used in Fedor- 
Malik et al. [7]

Numerical value of parameter used in this work

Fig. 4. 2 Fig. 4. 3 Fig. 4. 4 Fig. 4. 5

--- 0.3 to 1.07 0.1 0.01 0.2 0.05

--- 0.07 to 0.3 0.01 0.1 0.5 0.0001

𝑥 --- 0 to 1 0 to 1 0 to 1 0 to 1 0 to 1

--- 0 to 173.437 0.1, 0.5, 1 0.02, 0.5, 1, 2.5 0.1, 0.5, 2 0.01, 0.1, 
0.6,1, 3

-3mmoldm932.5,24.3=Sc -3
ie mmoldmKD 17,25104.9 9 =×= − 4.6,9=mK -3mmoldm



http://openaccessebooks.com/

44

Ta
bl

e 
4.

2:
 C

om
pa

ris
on

 o
f d

im
en

si
on

le
ss

 su
bs

tra
te

 c
on

ce
nt

ra
tio

n 
)

(x
U

w
ith

 n
um

er
ic

al
 so

lu
tio

n 
fo

r v
ar

io
us

 sm
al

l v
al

ue
s o

f  w
he

n 
α 

= 
0.

1,
 β

 =
 0

.0
01

.  

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

  D
im

en
si

on
le

ss
 su

bs
tra

te
  c

on
ce

nt
ra

tio
n 

)
(x

U
w

he
n 

00
1

.0
,1.0

=
=

β
α

x

γ E  
 =

 0
.1

   
   

   
   

   
   

   
   

   
  γ

E  
=

 0
.5

γ E  
=

 1

Simulation

A
D

M
Eq

.
(4

.1
0)

Er
ro

r 
%

H
A

 E
q.

 
(4

.1
1)

Er
ro

r %
H

PM Eq
. 

(4
.1

2)
   

Er
ro

r 
%

Simulation

A
D

M
Eq

. 
(4

.1
0)

Er
ro

r 
%

H
A

M
Eq

.
(4

.1
1)

Er
ro

r 
%

H
PM Eq

.
(4

.1
2)

   

Er
ro

r 
%

Simulation

A
D

M
Eq

.
(4

.1
0)

Er
ro

r 
%

H
A

M
Eq

.
(4

.1
1)

Er
ro

r 
%

H
PM Eq

.
4.

(1
2)

   

Er
ro

r 
%

0
0.

98
37

0.
98

37
0

0.
98

79
0.

43
0.

98
37

0
0.

92
20

0.
92

23
0.

03
0.

94
05

2.
01

0.
92

24
0.

04
0.

85
22

0.
85

39
0.

20
0.

88
33

0.
28

0.
85

46
3.

65

0.
2

0.
98

44
0.

98
44

0
0.

98
84

0.
41

0.
98

44
0

0.
92

51
0.

92
54

0.
03

0.
94

29
1.

92
0.

92
55

0.
04

0.
85

80
0.

85
54

0.
19

0.
88

80
0.

26
0.

86
02

3.
50

0.
4

0.
98

64
0.

98
64

0
0.

98
99

0.
36

0.
98

64
0

0.
93

45
0.

93
47

0.
02

0.
95

02
1.

68
0.

93
48

0.
03

0.
87

54
0.

87
67

0.
15

0.
90

21
0.

21
0.

87
72

3.
05

0.
6

0.
98

97
0.

98
97

0
0.

99
24

0.
27

0.
98

97
0

0.
95

02
0.

95
04

0.
02

0.
96

23
1.

27
0.

95
04

0.
02

0.
90

49
0.

90
57

0.
09

0.
92

57
0.

13
0.

90
61

2.
30

0.
8

0.
99

43
0.

99
43

0
0.

99
58

0.
16

0.
99

43
0

0.
97

25
0.

97
26

0.
01

0.
97

93
0.

70
0.

97
26

0.
01

0.
94

71
0.

94
75

0.
04

0.
95

91
0.

06
0.

94
77

1.
27

1
1.

00
00

1.
00

00
0

1.
00

00
0

1.
00

00
0

1.
00

00
1.

00
00

0
1.

00
00

0
1.

00
00

0
1.

00
00

1.
00

00
0

1.
00

00
0

1.
00

00
0

Av
er

ag
e 

 %
 o

f
de

vi
at

io
n

   
   

   
   

   
   

0
   

   
   

   
   

   
  0

.2
7

   
   

   
   

   
   

  0
   

   
   

   
   

   
   

   
   

   
   

   
  

0.
02

   
   

   
   

   
   

 1
.2

6
   

   
   

   
   

   
  

0.
03

   
   

   
   

   
   

   
   

   
   

   
   

   
 

0.
11

   
   

   
   

   
   

   
  

0.
16

   
   

   
   

   
   

1.
27



http://openaccessebooks.com/

45

x Dimensionless substrate  concentration )(xU  when α = 0.01, β = 0.1

γE = 0.02 γE = 0.5

si
m

ul
at

io
n

ADM
Error 

%
HAM

Error 
%

HPM
Error 

%

si
m

ul
at

io
n

ADM
Error 

%
HAM

Error 
%

HPM
Error 

%

0 0.9970 0.9970 0 0.9977 0.07 0.9970 0 0.9281 0.9281 0 0.9424 1.54 0.9307 0.28

0.2 0.9971 0.9971 0 0.9977 0.06 0.9972 0.01 0.9309 0.9309 0 0.9447 1.48 0.9334 0.27

0.4 0.9975 0.9975 0 0.9980 0.05 0.9975 0 0.9394 0.9394 0 0.9516 1.30 0.9715 0.23

0.6 0.9981 0.9981 0 0.9985 0.04 0.9981 0 0.9537 0.9537 0.03 0.9630 0.98 0.9552 0.16

0.8 0.9989 0.9989 0 0.9992 0.03 0.9989 0 0.9738 0.9738 0 0.9792 0.56 0.9746 0.08

1 1.0000 1.0000 0 1.0000 0 1.0000 0 1.0000 1.0000 0 1.0000 0 1.0000 0

Average  % 
of deviation

0 0.04 0.002 0.01 0.98 0.17

Table 4.3(a): Comparison of dimensionless substrate concentration )(xU with numerical solution for various small 
values of γE  when α = 0.01, β = 0.1

Table 4.3(b): Comparison of dimensionless substrate concentration )(xU with numerical solution for various small 
values of  when α = 0.01, β = 0.1.  

x                                                        Dimensionless substrate  concentration )(xU when α = 0.01, β = 0.1

                   γE = 1 γE = 0.5

si
m

ul
at

io
n

ADM Error 
% HAM Error 

% HPM Error 
%

si
m

ul
at

io
n

ADM Error 
% HAM Error 

% HPM Error 
%

0 0.8621 0.8626 0.06 0.8871 2.90 0.8711 1.04 0.6955 0.7046 1.31 0.7346 5.62 0.7507  7.09

0.2 0.8674 0.8679 0.58 0.8915 2.78 0.8759 0.98 0.7065 0.7151 1.23 0.7447 5.41 0.7587 7.39

0.4 0.8835 0.8839 0.05 0.9049 2.42 0.8906 0.81 0.7402 0.7473 0.96 0.7754 4.76 0.7836 5.86

0.6 0.9105 0.9108 0.04 0.9273 1.85 0.9156 0.56 0.7982 0.803 0.60 0.8274 3.66 0.8284 3.78

0.8 0.9491 0.9493 0.02 0.9589 1.03 0.9517 0.28 0.8834 0.8858 0.27 0.9017 2.07 0.8983 1.68

1 1.0000 1.0000 0 1.0000 0 1.0000 0 0.9995 1.0000 0.05 1.0000 0.05 1.0000 0.05

Average  % of

deviation

                    
0.04

                   
1.83

                     
0.61

                                            
0.74

                  
3.59

                     
4.45
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Figure 4.4: Dimensionless concentration )(xU  versus dimensionless distance x  when α = 0.01, β = 0.1. The curves a1, 
a2, a3, a4 (ADM), b1, b2, b3, b4 (simulation), c1, c2, c3, c4 (HAM), d1, d2, d3, d4 (HPM) are plotted when γE = 0.2, 0. 
5, 1, 2. 5 Symbols (---) equations. (4.10)-(4.12) and (…) numerical simulation. 

Figure 4.3: Dimensionless concentration )(xU versus dimensionless distance x  when α = 0.1, β = 0.001.  . The curves 
a1, a2, a3 (ADM), b1, b2, b3 (simulation), c1, c2, c3 (HPM), d1, d2, d3 (HAM) are plotted when γE = 0.1, 0. 5, 1. Sym-
bols (---) equations. (4.10)-(4.12) and (…) numerical simulation. 

Figure 4.5: Dimensionless concentration )(xU  versus dimensionless distance x  when α = 0.2, β = 0.5. The curves a1, 
a2, a3 (ADM), b1, b2, b3 (simulation), c1, c2, c3 (HAM), d1, d2, d3 (HPM) are plotted when γE = 0.1, 0.5, 2. Symbols 
(---) equations (4.10)-(4.12) and (…) numerical simulation. 
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Figure 4.6: Dimensionless concentration )(xU  versus dimensionless distance x  when α = 0.05, β = 0.0001. The 
curves a1, a2, a3, a4, a5 (HPM), b1, b2, b3, b4, b5 (HAM), c1, c2, c3, c4, c5 (ADM), d1, d2, d3, d4, d5 (simulation) are 
plotted when γE = 0.01, 0.1, 0.6, 1,3 Symbols (---) equations. (4.10)-(4.12) and (…) numerical simulation. 

Figure 4.7: The normalized three dimensionless steady-state concentration profiles )(xU calculated using equation 
(4.10) .The plot was constructed for the values of and α = 0.1 and β = 0.001 ,  and γE = 0.01.

Figure 4.8: The normalized three dimensionless steady-state concentration profiles )(xU calculated using equation 
(4.11) .The plot was constructed for the values of  α = 0.1 and β = 0.001, and γE = 0.1.
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Figure 4.9: The normalized three dimensionless steady-state concentration profiles )(xU calculated using equation 
(4.12). The plot was constructed for the values of α = 0.1 and β = 0.001, and γE = 0.1.

4.8. Conclusion

	 A non-linear ordinary differential equation in the investigation of kinetics of immobi-
lized liver esterase by flow calorimetry has been solved using Adomian decomposition meth-
od, Homotopy analysis and Homotopy perturbation method. The simple approximate expres-
sion of concentration of substrate for all values of parameters α, β and γE are reported. These 
methods can be easily extended to find the solution of all other non-linear reaction diffusion 
equations for immobilized enzymes with reversible Michaelis-Menten kinetics for various 
complex boundary conditions. These analytical results are useful for design and optimization 
of immobilized liver esterase by flow calorimetry.

4.9. Appendix 4.A

Basic concept of the Adomian decomposition method (ADM)

Adomian decomposition method [9-13] depends on the non-linear differential equation 

0))(,( =xyxF                                                                                                                (4.A1)

into the two components 

0))(())(( =+ xyNxyL                                                                                                      (4.A2)

	 where L and N are the linear and non-linear parts of F respectively. The operator L is 
assumed to be an invertible operator. Solving for )(yL  leads to 

)()( yNyL −=                                                                                                                  (4.A3)

Applying the inverse operator L on both sides of equation (4.A3) yields

),())(( xyNLy ϕ+−=                                                                                                        (4.A4)

	 where φ(𝑥)is the constant of integration which satisfies the condition L(φ) Now assum-
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ing that the solution y  can be represented as infinite series of the form 

∑
∞

=

=
0n

nyy                                                                                                                        (4.A5)

	 Furthermore, suppose that the non-linear term )(yN  can be written as infinite series in 
terms of the Adomian polynomials nA  of the form 

∑
∞

=

=
0

)(
n

nAyN                                                                                                                     (4.A6)     

	 where the Adomian polynomials nA  of )(yN  are evaluated using the formula:

0
0!

1)( =

∞

=










= ∑ λλ

λ n

n

n
n

n

n yN
d
d

n
xA                                                                                            (4.A7)            

	 Then substituting equations. (4.A5) and (4.A6) in equation (4.A4) gives

∑ ∑
∞

=

∞

=

− 







−=

0 0

1)(
n n

nn ALxy ϕ                                                                                                  (4.A8)

	 Then equating the terms in the linear system of equation (4.A8) gives the recurrent rela-
tion 

)()( 1
10 nn ALy  ,xy −
+ −== ϕ                                                              1−L                      (4.A9)

	 However, in practice all the terms of series in equation. (4.A7) cannot be determined, 
and the solution is approximated by the truncated series∑

∞

=0n
ny . This method has been proven to 

be very efficient in solving various types of non-linear boundary and initial value problems.

4.10. Appendix 4.B

Analytical solutions of concentrations of substrate using ADM 

In this appendix, we derive the general solution of nonlinear equation (4.7) by using Adomian 
decomposition method. We write the equation (4.7) in the operator form,

21
)(

UU
UUL E

βα

γ

++
=                                                                                                       (4.B1)

	 where x
dx
dxL 2

2
1−= . Applying the inverse operator 1−L  on both sides of equation. 

(4.B1) yields












++
++= −

2
1

1
)(

UU
UL

x
BAxU E

βα
γ                                                                                (4.B2)

	 where A and B are the constants of integration. We let,

)()(
0

xUxU
n

n∑
∞

=
=                                                                                                               (4.B3)

[ ] ∑
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=
=

0
n)(

n
AxUN                                                                                                                (4.B4)
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where                [ ] 










++
= 2 1

)(
UU

UxUN
βα

                                                                       (4.B5)

	 In view of equations (4.B3 - B5), equation (4.B 2) gives

∑∑
∞

=

−
∞

=
++=

0
n

1

0
      )(

n
E

n
n AL

x
BAxU γ                                                                                       (4.B6)

	 We identify the zeroth component as

x
BAxU    )(0 +=                                                                                                                   (4.B7)

and the remaining components as the recurrence relation

n
1

1  )( ALxU En
−

+ = γ   0≥n                                                                                                 (4.B8)

where nA  are the Adomian polynomials of nUUU ,...,, 21 . We can find the first few nA  as fol-
lows:

βα ++
==

1
1)( 00 UNA                                                                                                      (4.B9)

[ ] 2
1

1 01
)1(
)1()(

βα

β
λ

λ ++

−
=+=

UUUN
d
dA                                                                                 (4.B10)

	 The remaining polynomials can be generated easily, and so,

10 =U                                                                                                                              (4.B11)

)1(6
)1(

)(
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=
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)(
24
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2
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=
xxxU E

βα
βγ                                                                                    (4.B13)

Adding (4.B11) to (4.B13) we get equation (4.11) in the text.

4.11. Appendix 4.C 

Approximate analytical solutions of the system of equations (4.7-4.9) using HAM

In this appendix, we indicate how equation (4.11) in this chapter is derived. The Homotopy 
analysis method was constructed to determine the solution of equations (4.7-4.9).   

22

2

1
2

UU
U

dx
dU

xdx
Ud E

βα
γ
++

=+                                                                                              (4.C1)
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order deformation equation by taking 1)( =tH ,












−










++










++










+=










+− U

dx
dU

xdx
UdU

dx
dU

xdx
UdU

dx
dU

xdx
Udph

dx
dU

xdx
Udp Eγβα 2222)1( 2

2
2

2

2

2

2

2

2
(4. C2)  



http://openaccessebooks.com/

54

The approximate solutions of equation (4. C2) are as follows
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	 Substituting the series (4. C3) in equation (4. C2) and equating the like powers of p we 
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	 The boundary conditions becomes
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Now applying the boundary conditions equation (4.C7) in equation (4.C4) we get

1)(0 =xU                                                                                                                           (4.C9)        

Substituting the values of 0U  in equation (4.C5) and solving the equation using the boundary 
conditions equation (4.C8) we obtain the following result:
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	 Substituting the values of 0U  and 1U  in equation (4.C6) and solving the equation using 
the boundary conditions equation (4.D8) we obtain the following result:
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	 To find few iteration we get, the solution of )(xU to reach the better approximation. Add-
ing (4.C9), (4.C10) and (4.C11), we get equation (4.11) in the text.

4.12. Appendix 4. D

(4. C6)     

(4. C5)
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Approximate analytical solutions of the system of equations (4.7-4.9) using HPM

	 Solution of the equations (4.7-4.9) using Homotopy perturbation method. In this 
appendix, we indicate how equation. (4.12) in this chapter is derived. Furthermore, a Homotopy 
was constructed to determine the solution of equation (4.7).    
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	 The approximate solutions of equation (4.D1) is               
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Substituting equation (4.D2) into equation (4.D1), and comparing the coefficients of like pow-
ers of p  
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The boundary conditions are
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	 Solving the equations (4.D3) to (4.D5) and using the boundary conditions (4.D6) and 
(4.D7), we can find the following results                                                                      
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	 According to the HPM, we can conclude that 
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	 Using equations (4.D8), (4.D9) and (4.D10) in equation. (4.D11), we obtain the final 
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results are described in equation (4.12). 

4.13. Appendix 4.E

	 In this appendix, we derive the solution of equation (4.D4) by using reduction of order. 
To illustrate the basic concepts of reduction of order, we consider the equation 
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	 where P, Q,, R are function of x . Equation (4.D4) can be simplified to 
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	 Using reduction of order, we have
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	 Substitute (4.E4) in (4.E1), if 2U  is so chosen that 
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	 Substituting the value of P  in the above equation (4.E5) becomes 
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	 The given equation (4.E2) reduces to 
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	 Substituting (4.E8) in (4.E7) we obtain,                                   
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	 Integrating equation (4.E9) twice, we obtain 

66
)

620
(

6

33352 xxxxBAxv EE
E βγαγ

γ
−−−++=                                                                      (4.E10) 

	 Substituting (4.E6) and (4.E10) in (4.E4) we have,
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	 Using the boundary conditions equations (4.D6) and (4.D7), we can obtain the value of 
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the constants A and B. Substituting the value of the constants A and B in the equation (4.E11) 
we obtain the equation (4.D10). Similarly we can solve the other differential equations (4.B11), 
(4.C4), (4.C5), (4.C6), (4.E3) and (4.E5) using the reduction of order method.

4.14. Appendix 4.F

Scilab/Matlab program to find the numerical solution of equations (4.7-4.9). 

function pdex1 
m = 2; 
x = linspace(0,1); 
t = linspace(0,100); 
sol = pdepe(m,@pdex1pde,@pdex1ic,@pdex1bc,x,t); 
u = sol(:,:,1); 
surf(x,t,u) 
title(‘Numerical solution computed with 20 mesh points.’) 
xlabel(‘Distance x’) 
ylabel(‘Time t’) 
figure 
plot(x,u(end,:)) 
title(‘Solution at t = 2’) 
xlabel(‘Distance x’) 
ylabel(‘u(x,2)’) 
% -------------------------------------------------------------- 
function [c,f,s] = pdex1pde(x,t,u,DuDx) 
c = 1; 
f = DuDx; 
r=10; 
alpha=5; 
beta=2; 
s = -r*u/(1+alpha*u+beta*u*u); 
% -------------------------------------------------------------- 
function u0 = pdex1ic(x) 
u0 = 1; 
% -------------------------------------------------------------- 
function [pl,ql,pr,qr] = pdex1bc(xl,ul,xr,ur,t) 
pl = 0; 
ql = 1; 
pr = ur-1; 
qr = 0;   



http://openaccessebooks.com/

58

4.15. Appendix 4.G

Determining the region of h for validity

	 The analytical solution should converge. It should be noted that the auxiliary parameter 
h controls the convergence and accuracy of the solution series. The analytical solution rep-
resented by equation (4.11) contains the auxiliary parameter h, which gives the convergence 
region and rate of approximation for the Homotopy analysis method. In order to define re-
gion such that the solution series is independent of h, a multiple of h-curves are plotted. The 
region where the distribution of  )(xU  and )(' xU  versus h is a horizontal line is known as the 
convergence region for the corresponding function. The common region among )(xU  and its 
derivatives are known as the over all convergence region. To study the influence of h on the 
convergence of solution, the h-curves of )5.0(U  and )5.0('U  are plotted in figure 4.2(a), figure 
4.2(b) respectively, for α = 0.5, β = 0.3, γE = 0.5. These figures clearly indicate that the valid 
region of h is about (-2 to -0.5). Similarly we can find the value of the convergence control 
parameter h for different values of constant parameters.

4.16. Appendix 4.H

Nomenclature and Units.

Symbol Meaning Usual dimension

SPc Substrate concentration -3mmoldm

Sc Phenyl acetate concentration -3mmoldm

i
K Substrate inhibition constant -3mmoldm

mK Michaelis constant -3mmoldm

mV Kinetic parameter mK
r Particle radial co-ordinate None

pR Particle radius None

eD Diffusion coefficient 12dm −s

α , β Saturation parameters None

x Dimensionless distance None

U Dimensionless concentration None

γE Reaction diffusion parameter None
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5.1. Introduction

	 The reaction rate in a porous catalyst is affected by intraparticle mass and heat transfer in 
addition to the intrinsic kinetics. Except for an isothermal first-order reaction and a zero-order 
reaction, the balance equations are non-linear and are usually solved numerically to calculate 
the effectiveness factor. Since the numerical solution of the problem is regarded as tedious and 
time consuming, approximation of the effectiveness factor has been extensively investigated 
in the past and various simple approximate formulae are available in textbooks (for example, 
[1-5]). 

	 The usual numerical methods for the boundary-value problem are the finite-difference 
methods, the shooting methods [6] and the orthogonal collocation methods [7]. When the problem 
is non-linear, the methods become necessarily iterative ones, finding an improved solution 
based on the results of the previous iterations with a prospect that the iterative procedure will 
lead to the desired solution. The finite-difference method converts the boundary-value problem 
to a system of non-linear algebraic equations, the solution of which can be very difficult to 
obtain, especially when many base points are used in the method. The collocation methods 
are efficient when successful, but they are often unstable when many collocation points are 
used and the Thiele modulus is large [8]. The shooting methods convert the boundary-value 
problem into an initial-value problem, in which the missing boundary condition at the initial 
point is assumed. Through an iterative procedure, the methods try to produce a solution that 
agrees with all the given boundary conditions [9].

	 An interval method [10], continuation method [11], a branch and bound algorithm [12], 
simulated annealing [13], genetic algorithms [14], a terrain-following method [15,16] are also 
used to solve the non-linear equations. Currently, both trial-and-error shooting method [17, 
18] and a direct method that combines numerical integration and interval analysis [19] are 
available to find all solutions. Angelo Lucia [20] and co-workers present the two different 
collocation methods for the classical reaction –transport problems in spherical catalyst pellet. 
However, to the best of our knowledge, there was no rigorous solution for the concentration of 
reactant A at the surface of catalyst has been reported. The purpose of this chapter is to derive 
simple analytical expression for concentration and effectiveness factor for all possible values 
of reaction/diffusion parameters γ , β and ϕ.

Boundary Valur Broblem and Behaviour of Porous Catalyst Articles 
In View of Internal Mass and Heat Diffusion Effects

Chapter 5
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5.2. Reaction and diffusion in catalyst Pellets.

	 Many industrial reactors involve heterogeneous reaction kinetics of packed catalytic 
pellets in fixed-bed reactors, as illustrated in equation (1). A single catalyst pellet of radius 
R can be treated as a porous medium through which reactants diffuse while reactions occur 
simultaneously.

BA
H

catalyst

∇
 →                                                                                                            (5.1)                                                                               

The species and energy balances for diffusive transport inside the pellet can be written as 
follows [21]:

02 =+∇ AAz rCDε                   								            (5.2)  

02 =∆+∇ HrTK Azε                                                                                                    (5.3)  

	 Equation (5.2) is represent species balance and equation (5.3) is represent the heat 
balance.

 Where Arrhenius reactions rate is           sA
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The boundary conditions are

sARrA CC ,==                                                                                  (5.5)  

sRr TT ==                                                                                       (5.6)

000 =∇=∇ == rrA TC                                                                       (5.7) 

	 At the surface, concentration and temperature can be given by a Dirichlet boundary 
condition such as that in equations (5.5) and (5.6). Because of symmetry, the mass and energy 
flux at the center of the catalyst pellet is zero, as shown in equation (5.7). The system described 
by equations (5.2)-(5.7) represents the nonlinear PDE system for coupled heat and mass 
transfer in a spherical non-isothermal catalyst pellet. After inserting the temperature profile 
into the species balance,  equations (5.2)-(5.7) can be written in terms of the dimensionless 
concentration y (y =CA/CA,s), the dimensionless pellet radius x (x =r/R), and dimensionless 
constants α, β and ϕ. Using this dimensionless variable dimensionless non-isothermal species 
and heat transport are as follows [22]:
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	 The parameters âandã,φ are in equation (5.8) represent the dimensionless activation 
energy, the dimensionless heat of reaction, and the Thiele modulus as evaluated at the surface 
of the spherical catalyst pellet, respectively. These parameters are expressed in terms of the 



http://openaccessebooks.com/

63

pellet transport and reaction properties, as well as the pellet surface concentration ( SAC , ) and ( 
ST ) as follows:
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	 where AC is the concentration of reactant A inside the catalyst pellet, sAC ,  is the 
concentration of reactant A at the surface of catalyst pellet, zDε  is the effective diffusivity 
inside the catalyst pellet,  is the activation energy, Δ is th heat of reaction, refk  is the reference 
reaction constant, zKε  is the effective thermal conductivity inside the catalyst pellet, Ar  is the 
arrhenius reaction rate, gR  is the  universal gas constant, T is the temperature inside the catalyst 
pellet, refT  is the reference temperature and sT  is the temperature at the surface of catalyst 
pellet. The boundary conditions in dimensionless forms are

11 ==xy                                                            (5.12)                                                                                                                      	

00 ==xdx
dy 	  					     (5.13)

The overall reaction rate in a catalytic pellet is often expressed by the effectiveness factor 
(η), which measures the total reaction rate as a scalar multiple of a homogeneous first-order 
reaction at the surface concentration. The effectiveness factor for spherical pellet is [23]:

12
3

== xdx
dy

φ
η                                                  (5.14)

5.3. Analytical solution of the concentration using modified Adomian decomposition 
method (MADM)

In the recent years, much attention is devoted to the application of the Adomian decomposition 
method to the solution of various scientific models [24]. An efficient modification of the standard 
Adomian decomposition method for solving singular initial value problem in the second 
order partial differential equation. The MADM yields, without linearization, perturbation, 
transformation or discretisation, an analytical solution in terms of a rapidly convergent infinite 
power series with easily computable terms. The decomposition method is simple and easy to 
use and produces reliable results with few iterations used. The results show that the rate of 
convergence of modified Adomian decomposition method is higher than standard Adomian 
decomposition method [25-29]. Using this method (see Appendix 5.A), we can obtain the 
analytical expression of concentration (see Appendix 5.B), of the substrate as follows: 
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	 Using equqtion. (5.10), we can obtain the effectiveness factor

 15
)1(1

2 γβφ
η

−
−=                                                                                                      (5.16)     

	 The equations (5.14) and (5.15) represent the new and simple analytical expression of 
concentration of substrate and effectiveness factor.

5.4. Numerical simulation

	 The non linear diffusion equation (5.8) for the boundary conditions (equations (5.12) and 
(5.13)) is also solved numerically. We have used the function pdex1 in MATLAB software to 
solve numerically the initial-boundary value problems for the nonlinear differential equations. 
This numerical solution is compared with our analytical results in figures 5.1 and 5.2. Upon 
comparison, it gives a satisfactory agreement for all values of the dimensionless parameters, α, 

β and ϕ. The MATLAB program is also given in Appendix 5.C.

5.5. Discussion

	 The nonlinear PDE system for coupled heat and mass transfer in a spherical non-
isothermal catalyst pellet is solved analytically. The concentration of substrate depends on the 
following there factors, γ (dimensionless activation energy), β (dimensionless heat of reaction) 
and ϕ (Thiele modulus). Figure 5.1(a)-(b) shows the dimensionless concentration y  versus 
dimensionless pellet radius x . The concentrations were computed for various values of the 
dimensionless parameter γ, β and ϕ. From figures 5.1(a)-(b), it is evident that the value of 
concentration 1≈y  when 1=x  and ϕ < 0.5 for all values of γ and β. The concentration y  
decreases when ϕ increases.  

	 The normalized numerical simulation of three dimensional substrate concentrations 
y  versus dimensionless pellet radius x  is shown in figures 5.2(a)-(c). For fixed value of β 
(= 0.1) the value of concentration )(xy  is slowly decreasing when ϕ is increasing. Then the 
concentration of )(xy =1 when 1=x  and for all values of ϕ, γ and β. In these figure, it should 
be noted that the value of the concentration of substrate decreases for all values of γ. From 
this Figures, it is apparent that the value of the concentration of substrate increases when β 
increases. 

	 The variation in effectiveness factor for various values of γ, β and ϕ using equation 
(5.12) is shown in Figures 5.3- 5.5. From figure 5.3, it is evident that the effectiveness factor 
increases with the increasing value of the dimensionless parameter β. From figure 5.4, it is 
evident that the effectiveness factor increases with the increasing value of the dimensionless 
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parameter γ. From Figure 5.5, it is evident that the effectiveness factor increases with the 
increasing value of the dimensionless paramete γ, β. The effectiveness factor is equal to one 
when for ϕ <0.2 and all values parameters β and γ. 

Figure 5.1: Plot of dimensionless concentration Aversus dimensionless pellet radius x . The concentrations were 
computed for various values of the dimensionless parameter ϕ when (a) β = 0.1, γ = 1 (b) β = 0.295, γ = 202  The curves 
are plotted using equation (5.15). (—) denotes the analytical results and ( ) denotes the numerical simulations.

Figure 5.2: The normalized dimensionless concentration Aversus dimensionless pellet radius x .  calculated using 
equation. (5.15). The plot was constructed for the values of (a) β = 0.1, γ = 0.1 (b) ϕ= 0.1,  β = 0.1 and (c) ϕ= 0.1, γ = 
0.1.
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Figure 5.3: Plot of the effectiveness factor η versus dimensionless parameter β. The effectiveness factor η were computed 
using equation (5.16) when γ = 0.1.

Figure 5.4: Plot of the effectiveness factor η versus dimensionless parameter γ. The effectiveness factor η were computed 
using equation (5.16) when β = 1.

Figure 5.5: Plot of the effectiveness factor η versus dimensionless parameter γβ. The effectiveness factor η were 
computed using equation (5.16).

5.6. Conclusions

	 The analytical expression of concentration and effectiveness factor of the reactant A  
inside the catalyst pellets are derived. The approximate analytical expression for the steady 
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state concentration of substrate for all values of parameters ϕ,γ and β in a packed bed reactor was 
obtained using the modified Adomian decomposition method. A satisfactory agreement with 
the numerical result is noted. Moreover, we have also presented a closed form expression for 
the effectiveness factor. These analytical results are useful to analyze the reactivity behaviour 
of porous catalyst particles subject to both internal mass concentration gradients as well as 
temperature gradients, in endothermic or exothermic reactions.

5.7. Appendix 5.A

Consider the nonlinear differential equation in the form

)(),()1(2
2

xgyxFy
x
nny

x
ny =+

−
+′+′′ ; 0≥n                                   (5.A1)                                                               

with initial condition

ByAy =′= )0( ,)0( 							          (5.A2)

Where ),( yxF is a real function, )(xg  is the given function and A and B are constants. We 
propose the new differential operator, as below

yx
dx
dxL nn

2

2
−=  	                                            		     (5.A3)

So, the problem (5.A.1) can be written as,

).,()( yxFxgLy −=                                                                   (5.A4) 			 

The inverse operator 1−L  is therefore considered a two-fold integral operator, as below.

∫ ∫
−− =

x x nn dxdxxxL
0 0
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	 Applying 1−L of (5.A5) to the first three terms y
x
nny

x
ny

2
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+′+′′  of equation (5.A1) we 
find

	 By operating 1−L  on (5.A4), we have

),()()( 11 yxFLxgLAxy −− −+=                                                                                                 (5.A6)                            

	 The Adomian decomposition method introduce the solution )(xy  and the nonlinear 
function ),( yxF by infinity series
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	 where the components )(xyn of the solution )(xy will be determined recurrently and the 
Adomian polynomials nA  of ),( yxF are evaluated [24- 26] using the formula
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By substituting (5A7) and (5.A8) into (5.A6),
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	 Through using Adomian decomposition method, the components )(xyn can be determined 
as
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Which gives
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	 From (5.A9) and (5.A12), we can determine the components )(xyn , and hence the series 
solution of )(xy  in (5.A7) can be immediately obtained.

5.8. Appendix 5.B

In this appendix, we derive the general solution of nonlinear equation (5.8) by using Adomian 
decomposition method. We write the equation (5.8) in the operator form,
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	 where A and B are the constants of integration. We let,
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	 In view of Equations (5.B3), (5.B4) and (5.B5), equation (5.B2) gives
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	 We identify the zeroth component as

    )(0 BxAxy += 									                    (5.B7)

10 =y 											                     (5.B8)

and the remaining components as the recurrence relation
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	 where nA  are the Adomian polynomials of n21 y,...,y,y . We can find the first few nA  as 
follows:
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The remaining polynomials can be generated easily, and so,
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Adding (5.B8), (5.B12) and (5.B13) we get equation (5.16) in the text.

5.9. Appendix 5.C

The Matlab program to find the numerical solution of equation 8 is as follows.

function pdex1

m = 2; 
x = linspace(0,1);  
t = linspace(0,100); 
sol = pdepe(m,@pdex1pde,@pdex1ic,@pdex1bc,x,t);
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u = sol(:,:,1); 
surf(x,t,u)     
title('Numerical solution computed with 20 mesh points.')xlabel('Distance x') 
ylabel('Time t') 
figure   
plot(x,u(end,:)) 
title('Solution at t = 2') 
xlabel('Distance x') 
ylabel('u(x,2)') 
% -------------------------------------------------------------- 
function [c,f,s] = pdex1pde(x,t,u,DuDx) 
c = 1; 
f = DuDx; 
Q=1; 
B=1.5; 
r=1; 
s =-(Q^2)*u*exp(r*B*(1-u)/(1+B*(1-u))); 
% -------------------------------------------------------------- 
function u0 = pdex1ic(x) 
u0 = 1; 
% -------------------------------------------------------------- 
function [pl,ql,pr,qr] = pdex1bc(xl,ul,xr,ur,t) 
pl = 0; 
ql = 1; 
pr = ur-1; 
qr = 0;   

5.10. Appendix 4.D

Nomenclature

Symbol Meaning Usual dimension

CA concentration of reactant A inside the catalyst pellet  cm

CA,s concentration of reactant A at the surface of catalyst pellet  cm

εD Effective diffusivity inside the catalyst pellet  cm2/s

E activation energy  kJ mol−1.

g gradient of FT F  None

ΔH heat of reaction  kJ mol−1

refk  reference reaction constant  mmol L-1



http://openaccessebooks.com/

71

εK effective thermal conductivity inside the catalyst pellet  mmol L-1

Ar Arrhenius reaction rate  mmol L-1

gR universal gas constant  J/K

T temperature inside the catalyst pellet  kelvin

refT reference temperature  kelvin

sT temperature at the surface of catalyst pellet  kelvin

x dimensionless radius of the spherical catalyst pellet None

y dimensionless concentration along radial direction of catalyst pellet None

β dimensionless heat of reaction None

γ dimensionless activation energy None

η effectiveness factor None

ϕ Thiele modulus None
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6.1. Conclusions

	 In this book asymptotic methods such as Homotopy perturbation method, Homotopy 
analysis method and Adomain decomposition method were employed to obtain solution 
of various non-linear boundary value problems in bio-chemical systems. The influence of 
the parameter is discussed in detail. The validity of the obtained solutions is verified by the 
numerical results.

➣ Analytical expressions of concentrations inside the cationic glucose-sensitive membrane is 
obtained using, Homotopy analysis method.

➣ Time-dependent nonlinear reaction equations in immobilized enzyme systems were solved 
analytically and numerically. The closed analytical expressions of concentrations and current 
were obtained using Homotopy perturbation method.

➣ Approximate solution of non-linear boundary value problems in immobilized glucoamylase 
kinetics is evaluated using Adomain decomposition method, Homotopy analysis method and 
Homotopy perturbation method.

➣ The analytical expression of concentration and effectiveness factor of the reactant inside the 
catalyst pellets is derived using modified Adomain decomposition method.

6.2. Future Enhancements

The present investigation offers future enhancement on the following lines.

 The approach employed here to evaluate the concentration of oxygen, glucose, and gluconic 
acid for all values of parameters is extended for the non-steady state conditions.

 The Homotopy perturbation method can also be employed in obtaining current pertaining 
to membrane-based biosensor, amperometric biosensors and potentiometric biosensor.

 This method which is used to find the concentration and effectiveness factor in heterogeneous 
reaction kinetics can be extended to all reaction mechanics

 This anatical procedure can also be extended to find the solution of Poisson-Boltzmann 
equation (PBE), a three-dimensional second order nonlinear elliptic partial differential equation 
arising in biophysics, nuclear physics, semiconductor physics, population genetics and 
astrophysics. This problem has several interesting features impacting numerical algorithms, 

Conclusions and Future Enhancements

Chapter 6
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6.1. Conclusions

	 In this book asymptotic methods such as Homotopy perturbation method, Homotopy 
analysis method and Adomain decomposition method were employed to obtain solution 
of various non-linear boundary value problems in bio-chemical systems. The influence of 
the parameter is discussed in detail. The validity of the obtained solutions is verified by the 
numerical results.

➣ Analytical expressions of concentrations inside the cationic glucose-sensitive membrane is 
obtained using, Homotopy analysis method.

➣ Time-dependent nonlinear reaction equations in immobilized enzyme systems were solved 
analytically and numerically. The closed analytical expressions of concentrations and current 
were obtained using Homotopy perturbation method.

➣ Approximate solution of non-linear boundary value problems in immobilized glucoamylase 
kinetics is evaluated using Adomain decomposition method, Homotopy analysis method and 
Homotopy perturbation method.

➣ The analytical expression of concentration and effectiveness factor of the reactant inside the 
catalyst pellets is derived using modified Adomain decomposition method.

6.2. Future Enhancements

The present investigation offers future enhancement on the following lines.

 The approach employed here to evaluate the concentration of oxygen, glucose, and gluconic 
acid for all values of parameters is extended for the non-steady state conditions.

 The Homotopy perturbation method can also be employed in obtaining current pertaining 
to membrane-based biosensor, amperometric biosensors and potentiometric biosensor.

 This method which is used to find the concentration and effectiveness factor in heterogeneous 
reaction kinetics can be extended to all reaction mechanics

 This anatical procedure can also be extended to find the solution of Poisson-Boltzmann 
equation (PBE), a three-dimensional second order nonlinear elliptic partial differential equation 
arising in biophysics, nuclear physics, semiconductor physics, population genetics and 
astrophysics. This problem has several interesting features impacting numerical algorithms, 
including discontinuous coefficients representing material interfaces, rapid nonlinearities, and 
three spatial dimensions.
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