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Abstract

The inimitable belongings of ultramicroelectrodes can be used for shap-
ing thermodynamic and kinetic constraints of electrode progressions. By 
means of ultramicroelectrode through diverse radii, preceding (CE) and 
supplement responses of the ECE and EC’ nature can be quantitatively in-
vestigated. In this chapter, mathematical models for a ultramicroelectrode 
for the steady and transient states are discussed. Ultramicroelectrode can 
be modeled with linear and non-linear convection differential equations of 
EC’, EC, and ECE reactions mechanism. The chapter focuses on the be-
havior of ultramicroelectrodes. We discuss the recent modeling develop-
ments (analytical solution) of the concerntration produced and current in 
a ultramicroelectrode from all the electrochemical reactions are reviewed.
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1. Introduction

	 Ultramicroelectrodes (UMEs) are electrodes for which as a minimum one dimension is 
in the array among 0.1 µm and 50 µm. Ultramicroelectrode are lesser than minor electrodes 
(microelectrodes) in addition intended for electroanalytical chimsts,  convectional electrode 
is of millimetric dimensions hence  span microelectrode is suitable  the technique to describe 
electrodes of micrometric dimensions. In wide-ranging, it remained imagined that conductive 
polymer film accepts geometry of the hemisphere if electrodeposited scheduled an ultrami-
crodisc surface. Succeeding this, the microelectrodes stand well-thought-out to deposit on an 
electrode polymeric hemisphere coated on a disk electrode. 

	 Figure 1 denotes a hemispherical polymer on topmost of a plane, through a line inside 
insulating plane, in place of conducting wire that arises at the origin of the hemisphere. 
Following, a short-term response mechanistic model is given in Figure 2. Newly, there has 
been abundant curiosity in the growth of ultramicroelectrodes offer quite a lot of rewards in 
electrochemical measurements [1] such as lesser interfacial capacitance, slighter time constants, 
reduced ohmic drop, improved current density, etc. The outcomes of ultramicroelectrodes of 
several geometries to potential step experiments have been studied through an experiment 
[2, 3].Ultramicroelectrodes  have  been  functional  in  the studies  of  electrode  kinetics,  
exclusively  together with  homogeneous  kinetic  processes [4-6]. An UME is a working 
electrode used in a three electrode system. The small size of UME gives them comparatively 
huge diffusion layers and slight total currents. These structures permit UME towards realize 
suitable steady-state conditions and very high scan rates (V/s) with restricted distortion. UME 
was established independently by Wightmann and Fleischmann around 1980 [7].The rewards 
depending upon electrode geometry may be summed up as follows [8]: (a) A steady state 
(Disc, Ring, Hemisphere) or quasi-steady state (band, cylinder) current is attained even in a 
quiescent solution. (b) The steady state current permits to produce chemical and electrochemical 
kinetic measurements. (c) The current-potential curve with little deformation renders rapid 
measurements are likely in non-polar solvents or resistive solution without deliberately adding 
supportive electrolytes. Several kinds of microelectrode arrays have been studied for the 
design of sensors, micro-discs, bands, squares, inter digitated electrodes. The electrochemical 
response  rest on the figure of the electrodes and shape of the array. Quite a lot of models 
originated on analytical and numerical solutions also have been delivered to investigate the 
diffusion process happening at a regular ensemble of micro-disc electrodes [9-18]. 

	 Boundary  value  problems  connected  through  systems  of  linear  and  nonlinear ordinary  
differential  equations  happen  with various  divisions  of  science  and  engineering.  In this  
problems  boundary  conditions  are  mentioned  at  the  end points  of the  problem  domain,  
and  a solution of the differential equation on this area is sought that satisfies the given boundary 
conditions. Initial boundary value problems in two space dimensions (IBVP2Ds) show an vital 
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role in electrochemical kinetic studies by means of a variety of transient electroanalytical 
techniques [19-21] via microelectrodes [22-25].

Figure 1: Schematic representations of the geometry adopted through the polymer coated microelectrode adopted by 
the analytes.

Figure 2: Schematic model and a basic notation of a modified ectrode expected diffusion profile.

2. Boundary Value Problems in Ultramicroelectrodes:

	 Recently Rajendran et. al [26,27] calculated the two point Padé approximation 
designed for  unsteady state chronoamperometric current at ultramicrodisc electrodes and 
showed that the estimated multidimensional analytical appearance meant for the transient 
chronoamperometric current for a catalytic electrode reaction (EC’ reaction) at a hemispheroidal 
ultramicroelectrode. Further newly, Rajendran et. al [28] extended this work by calculating the 
transient chronoamperometric current response at hemispheroidal ultramicroelectrodes.

        Rajendran et al.  [29-32]  (i) proposedtwo point Pade´ approximants for chronoamperometric 
current at ultramicroelectrodes refer to reversible electron transfer reactions reacting to potential 
step experiments, moreover reviewed the analytical expressions, then numerical solutions of 
transient chronoamperometric current at a microring electrode underneath diffusion control, 
(ii) provided the stable and unstable current for microring electrode for an EC’ response, 
(iii) indicated the analogy of steady state EC' reactions with non-steady state diffusion 
versions and (iv) obtained transient chronoamperometric current response at hemispheroidal 
ultramicroelectrodes.
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	 Rajendran  et al [33- 35] derived accurate analytical appearance designed for the current 
by cylindrical electrodes for an EC’ reactions for minimum time and slow reaction rate, using 
Danckwert’s presence and reported the transient current for an EC’ reaction at a cylindrical 
electrodes for all that period and overall reaction rate, and also derived an analytical expression 
of current for steady state in addition non-steady state at polymer-modified electrodes for entire 
values of saturation parameter α within the polymer film using Danckwerts’ expression and 
compared the steady and non-steady-state currents for entire ultramicroelectrodses(circular 
disc, circular ring, elliptical disc, elliptical ring, band, hemisphere, hemicylinder, hemi-oblate 
and hemi-prolate electrodes) for EC -reactions.

	 Hence, it may be understood that in earlier period, substantial progress was achieved 
in the understanding of the electrode diffusion process at microring electrodes. This work 
examined the theory of mass transport at microring electrodes under restricted diffusion reaction 
and electrochemical reaction. Also non-steady-state current at microring electrodes has  been 
investigated with distinct topics, for example, short-time current expression, long-time current 
expression and all-time current expression. Moreover, steady state and unsteady state current 
at microring electrodes for EC’ reactions were examined in detail. This work is relevent to the 
applications of   microring electrodes in analytical and molecular electrochemistry. This review 
could benefit experimental researchers and few chemists with expertise in electrochemical 
analysis.

3. Analytical Solutions of Ultramicroelectrodes:

	 The concentration/current at ultramicroelectrodesis controlled by diffusion, convection, 
and migration. Non-linear  phenomenshows crucial part in electrical chemistry and biology 
(heat and mass transfer, filtration of liquids, diffusion in chemical reactions, etc.). Formerly 
quite  fewdecades, several authors mostly give their attention towards the resolution of non-
linear equations by using several analytical approaches, for instance Pade approximation 
method [29-32], the adomian decomposition method (ADM)  [36-38], variational iteration 
method(VIM)  [39], homotopy analysis method (HAM)  [40-42], homotopy perturbation 
method (HPM) [43], reduction of order method [44] and complex inversion formula [45].

4. Analytical Expressions of Current:

	 The recent contributions to the analytical terminologies of current designed for 
ultramicroelectrodes for various mechanisms are given the Table.
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5. Conclusion

	 Most mathematical and theoretical models of ultramicroelectrode are constructed on 
nonlinear reaction-diffusion differential equations. Various novel and advanced analytical 
systems for instance the homotopy perturbation technique, the Taylors series method, the Pade 
approximation technique, reduction of order method, hyperbolic function method, complex 
inversion formula etc. have been employed to obtain approximate analytical solutions under 
steady and non-steady state conditions. Reliable analytical results are very useful for the analysis 
of various parameters like the thickness of  electrode,  loading of the different species, steady-
state current, flux, diffusion rate, rate constant, reaction rate, the permeability of the porous 
medium, diffusion coefficients, kinematic viscosity, and voltammetry current. In conclusion, 
ultramicroelectrodes have made significant progress in power efficiency and stability since 
their conception. However, there is still a need for further theoretical and simulation research 
to make them a more technically and commercially feasible solution for wearable, implantable, 
and portable devices powering.
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