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Chapter 6

Overview on Gastric Cancer

Abstract

Recently, advancement in surgical techniques and preoperative care 
conditions have had positive effects on the clinical course of gastric 
cancer. However, gastric cancer still constitutes a significant public health 
problem because of its high prevalence, poor prognosis. Therefore, gastric 
cancer screening strategy has received widespread attention because 
of its significantly increased cancer detection rate. In some developed 
countries such as Japan, due to the well-established strategy for gastric 
cancer prevention screening, most of the new cases are now diagnosed at 
early stage and the patient’s prognosis is extremely good with more than 
90% could survive for 5 years or more. Globally Helicobacter pylori (H. 
pylori) has been classified as a Class I carcinogen and the major cause of 
gastric cancer. H. pylori-specific genetic diversity has been proposed to 
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PAI:  pathogenicity island; vacA: vacuolating cytotoxin A; EBV: Epstein-Barr virus; EBVaGC, EBV: associated gastric 
cancer; IL-1: interleukin 1; IL-8: interleukin-8; IL-10: interleukin 10, IL-17: interleukin-17

play an important role in determining gastric cancer risk. Additionally, 
with acceptance of H. pylori as a causative agent of gastric cancer, 
Epstain-Barr virus (EBV) has also been regarded to be a gastric cancer 
causing infective agent. Furthermore, host factors have been identified 
that influence the propensity toward gastric cancer development. Many 
studies recently indicated that it is better to discuss the synergistic effect 
of these factors with each for the gastric cancer development than to 
discuss which of these factors is the most virulent. Since gastric cancer 
is a multifactorial disease, and both infectious agents and host factors 
have an essential role in its etiology, thus early identification of these 
factors will positively impact gastric cancer screening strategy. This 
article is conducted to clarify risk of gastric cancer associated with 
H. pylori genetic diversity, EBV and host polymorphisms (IL-1β) and 
pepsinogen expression.

1. Helicobacter Pylori with Gastric Disease

1.1. Helicobacter pylori as a causative agent of gastric cancer

	 Gastric cancer (GC) is the fourth most common cancer in the world and the third most 
common cancer in Asia (GLOBOCAN 2012). In Vietnam, gastric cancer remains the fourth 
most common type of cancer; the third leading cause of cancer-related death in both genders 
(globocan.iarc.fr). Thus, gastric cancer screening strategy has received widespread attention 
because of its significantly increased cancer detection rate [1-3]. Preventative measures for 
gastric cancer have been conducted with the focus on H. pylori and this has succeeded in 
decreasing the mortality. 

	 H. pylori is gram-negative bacterium, colonizes the stomach of half of the global human 
population [4]. H. pylori secretes urease, which converts the chemical urea to ammonia. The 
production of ammonia around H. pylori neutralizes stomach acid in the vicinity of the organism, 
favoring bacterial multiplication. The ammonia may also both cause injury and potentiate the 
effects of a cytotoxin produced by H. pylori [5]. Colonization of the stomach by H. pylori can 
result in variety of upper gastrointestinal disorders, such as chronic gastritis (CG), peptic ulcer 
disease (PUD), gastric mucosa-associated lymphoid tissue (MALT) and gastric cancer (GC) 
[4-15].
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Figue 1: Diagram of H. pylori  infection

1) H. pylori invading mucous layer.  
2) H. pylori neutralizing surroundings using the enzymic activity of urease.  
3) H. pylori colonizing mucous layer.  
4) H. pylori causing inflammation, mucosal degredation, and cell death

1.2. The association of H. pylori genetic diversity and gastric cancer

	 H. pylori has emerged as the most important causal factor for gastric cancer. However, 
H. pylori infection only is insufficient to cause gastric cancer [16]. Indeed, H. pylori infection 
is common in all most Asian countries but gastric cancer incidence is significantly different 
between countries, being extremely higher in some countries such as Mongolia, South Korea, 
Japan, moderate in some countries such as Vietnam and being low in some countries like 
Thailand, Cambodia... This has led to the hypothesis that not all H. pylori strains are equal in 
virulence; some strains might be more virulent and better adapted to causing gastric cancer 
than others. Therefore, in order to evaluate H. pylori pathogenic, the emphasis is now shifting 
towards determining virulence factors. 

	 H. pylori exhibits a high level of interspecies genetic diversity and many studies have 
endeavored to identify strain-specific features of H. pylori that are linked to development of 
gastric cancer. One of the most prominent differences among H. pylori strains is the presence 
or absence of cag Pathogenicity Island (cag PAI). Current evidence suggests that the risk of 
gastric cancer is very low among persons harboring H. pylori strains that lack the cag PAI. 
Among persons harboring strains that contain the cag PAI, the risk of gastric cancer is shaped 
by the diversity of cag PAI or a complex interplay among multiple strain-specific bacterial 
factors such as cagA, vacA genotypes. Numerous studies have been reported regarding the 
correlation of putative virulence factors such as cagA to gastric cancer development [17-19]. 

	 The cagA gene (cytotoxin-associated gene A) has been classified into Western-type cagA 
and East-Asian-type cagA based on the sequences of repeat regions of the cagA containing Glu-
Pro-Ile-Tyr-Ala (EPIYA) motifs [20,21]. Individuals infected with East-Asian-type cagA H. 
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pylori have been reported to have an increased risk of peptic ulcer disease (PUD) and/or gastric 
cancer compared to those infected with Western-type cagA strains [22-24]. However, most 
strains isolated from East Asian countries are positive for East Asian cagA, thus the presence 
of cagA is insufficient to predict the risk of gastric cacer, consequently, the prevalence of East 
Asian cagA is insufficient to explain the difference in gastric cancer incidence between East 
Asian countries. Our previous studies also indicated that there was no significant difference in 
cagA prevalence between peptic ulcer (PU) and chronic gastritis (CG) in Vietnam [25]. 

	 The cagA gene was found to be part of a pathogenicity island (PAI), a horizontally 
transferred 40-kb gene fragment containing 27 genes. Although the cagA gene has served as a 
marker for the PAI, the presence of this single gene does not necessarily indicate the presence 
of a complete set of cag PAI genes. Upon contact with host cells, H. pylori induces a signaling 
cascade involving Ca2+-calmodulin and extracellular signal-regulated kinase (ERK) that leads 
to the activation of the transcriptional regulator NF-κB, which activates IL-8 production [26]. 
Several of the genes but not cagA within the cag PAI, have been shown to be required for 
the stimulation of IL-8 production in host epithelial cell lines. Furthermore, genetic diversity 
within the cag PAI has been determined to involve in the development of atrophic gastritis and 
may increase the risk for gastric cancer [24,27-29]. cagA show considerable genetic diversity, 
but the diversity of the cag PAI, which transports the bacterial oncogene cagA into host cells, 
has not been systematically investigated. Comparative analysis of the nucleotide sequences 
and functional diversity of the cag PAI of the H. pylori strains isolated from patients presenting 
with the different clinical situations provides an important resource that can guide future 
research on the biological roles and host interactions of cag PAI proteins, including several 
whose function is still unknown.

Figure 2: The cag pathogenicity island contains genes that show marked sequence variation [29]

	 A | Arrangement of cag PAI genes in H. pylori strain 26695. Most of the cag genes 
are probably involved in the assembly of the type IV secretion system that translocates the 
protein CagA into the cytoplasm of gastric epithelial cells. Seven genes (marked in red) show 
similarity to components of the type IV secretion system of the plant pathogen Agrobacterium 
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tumefaciens. Proteins encoded by the island are involved in two major processes, the induction 
of interleukin-8 (IL-8) production by gastric epithelial cells and the translocation of CagA 
from the bacterium into host cells. All genes depicted by arrows in dark shades of red and 
green are essential for IL-8 induction, whereas lighter shades of red and green indicate genes 
that are not involved in this process. The arrows marked with a red dot indicate genes that are 
not required for translocation of CagA, the non-marked genes are essential for translocation.

	 b–d | Exposure of cag proteins to the host presumably places them under strong positive 
selection in vivo. Extensive sequence variation, possibly linked to host adaptation, has so far 
been documented  for three cag PAI-encoded proteins, CagY (HP0527)

b), A protein that probably forms a sheath covering the type IV pilus, CagC (HP0546)

c), The putative cag pilin, and the translocated effector CagA (HP0547)

d). CagA shows striking ethnic and individual variation in its C-terminal repetitive 
phosphorylation (EPIYA) motifs; the upper four combinations of EPIYA types depicted are 
characteristic for Western strains, and the lower combination (ABD), including the unique 
Asian D-type EPIYA motif, is associated with East Asian strains. FRR, 5'-repeat region; FVR, 
5'-variable region; MRR, middle repeat region; TVR, 3'-variable region [29]

	 Vacuolating cytotoxin A (vacA) is another extensively studied H. pylori virulence factor 
[30-33]. As an intracellular-acting protein exotoxin, vacA affects multiple cellular pathways 
in different host cell types, induces host cell vacuolation and finally cell death. Furthermore, 
specific vacA genotype shave been reported to be useful for predicting different clinical outcomes 
[34-36]. Individuals infected with vacA s1, i1 or m1 H. pylori strains have an increased risk 
of peptic ulcer disease and/or gastric cancer compared to those with s2, i1 or m2 strains. The 
prevalence of vacA genotypes contribute to incidence differences between countries and also 
between regions in a country. Our previous study showed that the prevalence of strains with the 
vacA m1 type was predominant in Hanoi (northern region), but not in Ho Chi Minh (southern 
region) (58% vs 36.2%, p<0.05) [25,37]. We suggested that vacA m1 type might contribute 
to the difference in the incidence of gastric cancer between Hanoi city and Ho Chi Minh city; 
the incidence is approximately 1.5 times higher in Hanoi. Recently, two additional regions of 
variation were found in vacA: the deletion (d)-region, located between the i- and the m-region 
exhibiting either d1 genotype without the 69 to 81 base pair (bp) deletion or d2 genotype with 
the deletion; and c-region [38,39]. The last includes a deletion of 15bp located at the 3’-end 
region sequences of the vacA and divided into c1 (with deletion) and c1 (without deletion). 
Even though the knowledge of the structure function relationships of the vacA d1 region have 
been limited, the presence of the vacA d1 strains have been proposed as new determinant of 
gastric cancer and potential for atrophy rather than the s-, m-, and i-region [38,40].
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Figure 3: Diversity of vacA genes [39]

	 Sequence diversity regions of the vacA closely associated with vacuolating activity of H. 
pylori and clinical outcomes are localized to the signal region (SR); the intermediate region 
(IR) on p33 domain; the d-region (DR), middle region (MR) and c-region (CR) on p55 domain. 
The different types of these regions are associated with differences in vacuolation, specificity 
and clinical outcome. The s1, m1, i1 type have been classified as fully active vacA and are 
associated with a higher risk of development of gastric cancer than the s2, m2, or i2. In 
contrast to the s1 type, the s2 forms of vacA consistently lack detectable vacrolation activity in 
most in vitro assays. In comparison to the m1/i1 types , the m2/i2 types are considerably less 
active and virtually nontoxic. The function of the i3 remains undefined. The d-region has been 
considered to be related with vacA binding to the host gastric cells and vacuolating activity, 
however, compelling evidence to support this is still lacking. The function of the c-region 
remains a mystery; however, the c1 genotype has been strongly associated with the risk of 
gastric cancer. The s1 and m1 genotype have been further classified into three subtypes s1a, 
s1b, s1c and m1a, m1b, m1c, respectively

In addition, whole‐genome sequencing allows further analysis the genetic differences between 
gastric cancer strains and non-gastric cancer strains. The genome comparison of strains isolated 
from gastric cancer and no gastric cancer (ulcer gastric, chronic gastritis) cases provides 
comprehensive insight of contribution between gastric cancer and bacterial genetic diversity.

2. The association between Epstain-Barr virus and gastric cancer

	 Epstein-Barr virus (EBV), also known as human herpes virus 4, is a gamma-herpes 
virus that consists of double-stranded DNA of ~170 kb in length. It is one of the most common 
human herpes viruses and infects > 90% of the world's population by adulthood and establishes 
lifelong, latent infections. 

	 EBV was the first virus to be associated with human malignancy, which was discovered 
from a Burkitt's lymphoma cell line in 1964 [41]. EBV has been associated with a variety of 
lymphoid and epithelial malignancies, such as Hodgkin’s disease [42],  nasopharyngeal carcinoma 
(NPC) [43], T-cell lymphomas [44], AIDS-related lymphoma [45] and lymphoepithelioma-
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like carcinomas (LELC) of several organs including salivary glands, thymus and lung [46]. 

	 In 1990, Burke et al [47], first reported the association between EBV and gastric 
carcinoma with characteristic lymphoepithelioma-like histology based on polymerase chain 
reaction (PCR) techniques. Subsequent development of in situ hybridization (ISH) techniques 
to detect EBV-encoded smal RNAs (EBERs) facilitated the detection of EBV in cancer tissues 
[48],[49]. Among EBV-associated neoplasms, EBV - associated gastric carcinoma (EBVaGC) 
is most common and distributed worldwide, while Burkitt’s lymphoma and nasopharyngeal 
carcinoma are endemic to equatorial Africa and southeast China, respectively.

	 The frequency of EBV infection in gastric carcinoma ranges from 2 to 20%, with a 
worldwide average of nearly 10%. EBV associated gastric cancer varies in different countries, 
for example 19.5 % in German [50], 13% in Colombia [51], 12% in United States [52],  11.3% 
in Brazil [53], 10.2% among Japanese Americans in Hawaii [54], 9.0% in Iran [55], 8.5% in 
France [56], 7.3 % in Mexico [57], 6.4 % in China [58], and 5.6% in Korea [59]. 

	 These differences in reported frequencies may be because of geographical and 
environmental factors, although this remains controversial. In a meta-analysis done by Murphy 
et al [60], the pooled estimates of EBV-associated gastric cancer (EBVaGC) frequency in 
American, European and Asian were 9.9, 9.2 and 8.3%, respectively, with an overall frequency 
of 8.7%. A recent meta-analysis done by Camargo et al [61] revealed a similar overall frequency 
(8.2%), although the frequencies they found were slightly higher in American (12.5%) and 
European (13.9%) cases and lower in Asian cases (7.5%). Yanagi et al [62],  screened for EBV 
infection in 1067 gastric cancer lesions of 1132 patients who underwent surgical resection 
from 2007 to 2017 in Japan and examined  clinicopathological features of EBVaGC. Research 
results indicate that EBV was infected in 80 gastric cancer lesions (7.1%). Based on the annual 
incidence of gastric carcinoma (934.000 cases per year), nearly 70.000-80.000 people per year 
are estimated to develop EBVaGC [63]. 

	 Several constant clinical pathological features were seen in EBV associated gastric cancer 
such as moderately to poorly differentiated type of gastric cancer [64],[65] and predisposition 
to upper stomach [66],[67].

	 By endoscopy, EBVaGC appears as superficial depressed (or ulcerated) lesions in the 
upper part of the stomach. Tumor locates predominantly in the non-antrum part of the stomach 
[68]. EBV-associated gastric cancer often takes the form of an ulcerated or saucer-like tumor 
accompanied by marked thickening of the gastric wall. These features are well discernible on 
endoscopic ultrasonography and computed tomography scans of the stomach  [69]. 

	 Because gastric cancer related to H. pylori a causative agent of chronic gastritis, 
intestinal metaplasia, and cancer, locates predominantly in the antrum, these pathogens have 
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been thought to cause gastric cancer by independent mechanisms [68]. Gastritis related to 
H. pylori  frequently starts in the antrum. However, Yanai et al. reported that EBVaGC are 
frequently located near the mucosal atrophic border, where mild to moderate chronic atrophic 
gastritis is common [70]. They also showed frequent detection of both EBV and H. pylori 
the mucosa with moderate chronic atrophic gastritis, where inflammatory cell infiltration is 
abundant, and not at the mucosa with marked chronic atrophic gastritis, where inflammatory 
cell infiltration is scarce [71].

	 To be oncogenic, after pervading to host cell, EBV must maintain its genome inside its 
own to avoid from recognition of the immune system. Atrophic gastritis has been believed to 
facilitate the infiltration of EBV-carrying lymphocytes and increase the chance contacting with 
the gastric epithelial cells of EBV. Additionally, atrophy leads to hypochlorhydria, which is 
permits overgrowth of more pH-sensitive competing bacteria following produces a cytokine-
rich microenvironment to support clonal growth of EBV infected epithelial cells. On the other 
hand, atrophic gastritis is well known as the morphological phenotype of H. pylori gastritis. 
Moreover, both H. pylori and EBV present in the gut, each of them have been associated to 
gastric cancer, so the interaction between these pathogens might enhance the risk of gastric 
cancer development. Based on these evidences, detection of  EBV in gastric cancer cases, 
especially in H. pylori related gastric cancer cases has a positive impact on gastric cancer 
prognosis. [71]

3. Host factors and gastric cancer susceptibility

	 Even though the mortality of gastric cancer has shown a decreasing trend in Western 
countries, it still remains high in such Eastern countries as Mongolia, Korea,  Japan and China. 
Despite an overall decrease in gastric cancer incidence in recent years, this disease is still 
responsible for over 700000 deaths per year  [72],[73], and represents a significant medical 
burden in many countries. Carcinogenesis of gastric is caused by various risk factors, including 
genetic predisposition, environment, and microbial infections.  

	 The Gram negative bacterium,  Helicobacter pylori (H. pylori), has been classified as 
the definite etiological factor for gastric adenocarcinoma [74]. However, of infected patients 
only 15-20% and <1% will develop ulcers (gastric or duodenal) or gastric adenocarcinoma, 
respectively [75]. It is believed that bacterial and host factors such as the H. pylori strain 
virulence, environmental factors and genetic predisposition are all responsible for the different 
pathological outcomes [76].  Therefore, some genetic factors may contribute to the development 
of gastric cancer. Many single-nucleotide polymorphisms (SNPs) have been implicated in 
gastric carcinogenesis [77],[78]. Here are some of Interleukin studied and related to gastric 
cancer
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3.1. Interleukin 1 Family 

	 The interleukin (IL)-1 gene cluster on chromosome 2q contains three related genes within 
a 430 kb region, IL-1A, IL-1B, and IL-1RN, which encode the pro-inflammatory cytokines 
IL-1α and IL-1β, as well as the endogenous anti-inflammatory cytokine IL-1ra, respectively 
[79].  

	 IL-1β is a proinflammatory cytokine induced by H. pylori infection and is a powerful 
inhibitor of gastric acid secretion. Its effects promote hypochlorhydria, favoring further 
colonization of H. pylori and a more severe gastritis. IL-1β, upregulated in the gastric mucosa 
infected with H. pylori, plays a crucial role in initiating and amplifying the inflammatory 
response to H. pylori infection and is simultaneously a potent inhibitor of gastric acid secretion 
[80],[81].  With espect to IL-1ra, it competitively binds IL-1β receptors, thus modulating the 
presumptively deleterious effects of IL-1β. 

	 Three biallelic single nucleotide polymorphisms (SNP) of the IL-1B gene at positions 
-511, -31, and +3954 base pairs (bp) from the transcriptional start site have been most commonly 
described for potential association with gastric cancer: both C-T base transitions at positions 
-511 and +3954, and a T-C base transition at position -31 [81].   The SNP at -31 and -511 are in 
near-complete linkage disequilibrium [82].  The IL-RN gene has a variable number of tandem 
repeats (VNTR) of 86 bp polymorphism in intron2, generating a short allele with two repeats 
(IL-1RN*2) and long alleles with three to six repeats (IL-1RN), respectively  [83].  

	 Numerous studies have found associations between IL1B polymorphisms and gastric 
cancer in populations of European and African origin: IL1B-31, IL1B-511 and IL1RN*2 were 
independently associated with hypochlorhydria and increased frequency of atrophic gastritis, 
intestinal metaplasia and gastric cancer in H. pylori infected Scottish, Polish and German 
patients [80],[84]. 

	 While an increased risk of H. pylori associated gastric cancer has been noted in American 
Caucasians [84]  with the IL1B –511 or IL1RN*2 polymorphism, a study of African American 
and Caucasian patients in the USA found that the IL1B +3954 polymorphism, but not IL1B 
–31, IL1B –511 and IL1RN*2 polymorphisms, was associated with increased risk of H. pylori 
dependent multi atrophic gastritis [85]. 

	 Mexicans with the IL1B –31 polymorphism alone or in combination with IL1RN*2 
appear to have an increased risk of H. pylori  associated gastric cancer [86], while no association 
between IL1B polymorphisms and gastric cancer was found in Spanish Caucasian patients 
[87]. 

	 Two studies investigated IL1B polymorphisms in the Portuguese, who have a high 
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incidence of H. pylori infection and gastric cancer. One found that IL1B –511 and IL1RN*2 
polymorphisms were independently associated with an increased risk of gastric cancer, with 
a substantial increase in gastric cancer risk in individuals carrying both polymorphisms [88]. 
A second found an increased risk of gastric cancer in patients with IL1B –511 or both IL1B 
–511 and IL1RN*2 polymorphisms, but not IL1RN*2 alone [89]. While studies in central Italy, 
Costa Rica and Oman (areas of high gastric cancer prevalence) found no association between 
IL1B –31 and IL1B –511 polymorphisms and gastric cancer, carriers of the IL1RN*2 allele had 
an increased risk of gastric cancer [90-92]. 

	 The studies in Asia are different from those in Europe. Increasing evidence suggests that 
IL1B polymorphisms are less important to gastric cancer development in Japanese populations, 
with no correlation between IL1B polymorphisms and expression of the IL-1β cytokine in the 
stomach, the severity of H. pylori induced inflammation, or atrophy [93-96]. It has even been 
suggested that the IL1B-511 polymorphism may indicate less risk for gastric cancer in the 
Japanese [97], although a different study found H. pylori infected Japanese patients with the 
IL1B –511 polymorphism had higher gastric pH, associated with more widespread infection 
and more severe inflammation [98]. 

	 Similarly in Korea, studies have found no association between IL-1B polymorphisms 
and H. pylori induced pathologies, including gastric cancer [99-101], with the exception of a 
possible link with IL1RN*2 [102].

	 In contrast, however, many studies in China reflect the Caucasian findings, with IL1B 
–511 and IL1RN*2 polymorphisms associated with increased risk of H. pylori-induced 
pathologies, including gastric cancer [103-107].

	 Overall, these observations indicate a strong ethnic effect on the relative importance of 
IL-1β and H. pylori pathogenesis, with associations between IL1B polymorphisms and gastric 
cancer depending upon the country and/or ethnic origin of the infected population. 

3.2. Interleukin-8 

	 Interleukin 8 (IL-8) seems to have significant potential as a prognostic and predictive 
cancer biomarker. IL-8 was originally identified as a chemoattractant for neutrophils that 
release angiogenic growth factors, stimulating angiogenesis as a part of cancer progression. 

	 IL8 is up-regulated after H. pylori infection and is potentially the most important cytokine 
produced by the host in response to H. pylori infection [108].. The infiltration of neutrophils into 
the stomach mucosa in response to H. pylori infection (termed ‘active’ gastritis) is associated 
with more severe disease outcomes

	 IL-8 polymorphisms may increase the risk of gastric cancer. Taguchi et al [109] reported 
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the association of the IL-8-251 A/T polymorphism with higher expression of IL-8 protein, severe 
neutrophil infiltration and increased risk of atrophic gastritis and gastric cancer. IL-8-251 T/A 
and IL-8-251 A/A polymorphisms may be associated with angiogenesis in gastric carcinogenesis 
in H. pylori-infected Koreans [110]. In the study, there were significant correlations between 
MMP-9, angiopoietin-1 concentrations and disease progression in IL-8-251 A/A and IL-8-251 
A/T genotypes. Felipe et al [111] reported that patients with the heterozygous IL-8-251 A/T 
genotype, high fat intake and smokers or ex-smokers presented an increased risk of gastric 
cancer in a Brazilian population. However, the association of IL-8 polymorphisms and gastric 
cancer is controversial. The IL-8 polymorphism was not consistently associated with gastric 
cancer risk in a Polish population [112]. Furthermore, a meta-analysis of epidemiological 
studies revealed an overall lack of association between IL-8-251 gene polymorphisms and risk 
of gastric cancer; any association is likely to be variable depending on histological type, tumor 
location, H. pylori infection, and ethnicity/country [113].

3.3. Interleukin-10.

	 Interleukin-10 (IL-10) is produced by a wide range of cells including monocytes, 
macrophages, mast cells, T and B lymphocytes, regulatory T cells and dendritic cells. IL-10 
is a potent inhibitor of antigen presentation as well as dendritic cell activation and maturation, 
thereby suppressing production of a range of important inflammatory cytokines including IL-
1, IL-6, IL-12 and TNF-α [114]. 

	 Three main polymorphisms in the IL-10 promoter have been identified (–1082 (G/A), 
–819 (C/T) and –592 (C/A)), which combine to form three main haplotypes: GCC (associated 
with increased IL-10 production), ACC and ATA (associated with reduced IL10 production) 
[115],[116]. 

	 However, there is no consensus on the results of different studies regarding the association 
between H. pylori infection and IL-10. One study found that American Caucasians with the 
IL-10 ATA haplotype had an increased risk of H. pylori induced gastric cancer [117]. It is 
hypothesized that people carrying this low IL-10 producing haplotype are at increased risk 
of gastric cancer due to the increased inflammatory response resulting from reduced levels of 
this protective cytokine. IL-10 polymorphisms have also been associated with increased risk 
of gastric cancer and intestinal metaplasia in Mexican and Korean patients,  gastritis in Indian 
patients and gastric cancer in a Chinese population [118-121].

	 However, an equal number of studies have failed to find any association between IL-10 
polymorphisms and increased risk of H. pylori induced pathology, including atrophic gastritis 
and gastric cancer in European [116],[122],[123], Chinese [124],[125] and Japanese patients 
[126],[127].
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3.4. Interleukin-17

	 Recently there has been heightened interest in the potential significance of interleukin 17 
(IL-17) in the development/progression of human malignancies. IL-17A, the original member 
of this family, was first identified in 1951 and was initially recognized for its similarity to a 
sequence belonging to open reading frame 13 of Herpesvirus saimiri. IL-17 is a relatively 
newly described family of pro-inflammatory cytokines that consists of six family members (IL-
17A–F) [128]. IL-17 is produced by CD4+ memory T cells, and it is involved in both innate 
and adaptive immune responses [129]. It has been reported that IL-17A, a pro-inflammatory 
cytokine, is associated with the pathogenesis of chronic inflammatory diseases, autoimmune 
diseases [130] and cancer progression [131].

	 There are many studies that focus on the relationship between IL-17A G197A 
polymorphism and gastric cancer [132-146]. These studies have been done a lot in China, both 
experimentally and clinically. However, their results are always inconsistent. Since 2015, only 
one meta-analysis has been conducted, and 11 case-control studies were included in this meta-
analysis. Today, more than seven studies that assessed the association between IL-17A G197A 
polymorphism and the risk of gastric cancer have been published.

4. The synergistic effect of infectious agents and host for GC development.

	 Many studies recently indicated that it is better to discuss the synergistic effect of 
multiple factors for the development of GC than to discuss which factors is the most virulent. 
The cagA-positive strains were defined to be correlated with severer histopathological 
modifications and this gene was commonly associated with the vacAs1 genotype, and such 
isolates are frequently found in patients with peptic ulcer disease [147]. The observations of 
combination of the vacA s-, m-, i-, region genotypes among H. pylori strains have provided 
better insight into determination of the difference of vacuolating activity between strains and 
clinical outcomes. The variations in the s- and m-regions give rise to four different H. pylori 
genotypes; s1m1, s1m2, s2m1 and s2m2 with different abilities in inducing the formation of 
acidic vacuole in the infected cell. In general, s1m1 strains were characterized a large amount 
of toxin and caused the vacuolization of epithelial cell to a greater extent; s1m2 strains were 
indicated that may or not induce cell vacuolation depending on the infected cell line, s2m2 
strains showed indeterminate levels of produced cytotoxin and s2m1 strains were reported to 
be rare and non-vacuolating [148-152]. All s1m1i1 strains arevacuolating, whereas all s2m2i2 
are non-vacuolating, the s1m2 strains containing the i1 genotype induce cell were recognized 
inducing cellular vacuolation while those containing the i2 genotype were not. Thus, s1m1i1 
and s1m2i1 strains showed more virulent and more likely associated with gastric cancer than 
the s2m2i2 and s1m2i2, respectively [34],[149],[153]. Taking genotypes of d- and c-region 
into combination with genotypes of other variant regions, d1/c1 and d2/c2 strains almost 



13

Overview on Gastric Cancer

exclusively showed the types producing vacuolatingcytotoxin (s1m1i1) and non-vacuolating 
types (s2 m2 i2), respectively [38],[39].

H. pylori and EBV have been associated with cancer development, Sanket et al found that 
the dual prevalence of H. pylori infection and EBV was significantly higher in patients with 
gastric cancer and peptic ulcer disease than in those with non-ulcer dyspepsia (NUD). Median 
copy number of EBV-DNA was considerably higher in gastric cancer and peptic ulcer disease 
than NUD. There was a trend for higher EBV-DNA load in H. pylori positive individuals 
suggesting a probable role of H. pylori in modulating the conversion of EBV to its lytic phase 
[154]. Evidently, H. pylori factors and the host inflammatory response confer oxidative stress 
to the gastric epithelium during H. pylori infection that may lead to apoptosis [155]. Jun-
Bo Hong et al found that H. pylori infection has a synergistic effect on the development of 
gastric cancer with IL-1β gene polymorphisms, and the highest prevalence of severe gastric 
abnormalities are found in patients with both host and bacterial high-risk genotypes (cagA(+)/
vacAs1(+)/IL-1β-511T) [156]. Infection with H. pylori strains harboring more than one CagA 
EPIYA C motif was clearly associated with gastric cancer and higher number of EPIYA C 
segments was also associated decreased serum levels of pepsinogen I  [157].

5. Conclusion

	 Gastric is a highly lethal disease and one of the most common cancer. The establishment 
of H. pylori as a risk factor for this malignancy permits an approach to identify persons at 
increased risk; however, infection with this organism is extremely common (around 50% in 
worldwide), and most colonized persons never develop cancer. Thus, techniques to identify 
high-risk subpopulations must utilize other additional biological markers. It is apparent from 
recent studies that cancer risk is the summation of the polymorphic nature of the bacterial 
population in the host, the host genotype and susceptibility, and environmental exposures 
including EBV infection, each affecting the level of long term interactions between H. pylori 
and humans. Analytical tools including sequencing H. pylori genome, genotyping virulence 
factors (cagPAI, cagA, vacA), detecting EBV co-infection, host susceptibility analysis 
comprising host polymorphism (e.g IL1β) may be used to discern the fundamental biological 
basis of H. pylori-associated gastric cancer, which should have direct clinical applications.,.
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