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Chapter 2

Emerging Trends in Ultrasound
Imaging

1. Definition

	 Ultrasound has proved its diagnostic value through last five decades. For the observation 
of soft tissue, ultrasound (US) imaging has become very popular, since it has high axial and 
lateral resolutions of approximately 20-100 µm and a good penetration depth of approximately 
5 mm. US imaging has also low cost, however, it can only provide information about the 
morphology. Scanning acoustic microscopy (SAM) is an imaging tool which uses high 
frequency ultrasound and provides morphological and mechanical information about the 
specimen simultaneously at microscopic levels. Photoacoustic microscopy (PAM) is a well-
known imaging modality that combines optical and ultrasound imaging and obtains chemical 
and morphology information with a good penetration depth and with a micrometer resolution. 
Detection of micro-meter sized formations within tissues or cells with a good penetration 
depth is possible with a combined SAM and PAM system, which uses ultrasound waves rather 
than a system using ionizing radiation.

Keywords: Scanning Acoustic Microscopy; Photoacoustic Microscopy; Acoustic Impedance; Sound Speed; 
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2. History

	 With no harm created on humans, low cost ultrasound imaging is conventionally used 
for the observation of soft tissue, however, it can only provide morphological information. 
Besides, the signal detection capability has to be increased for the detection of micro-meter 
sized formations, since high echo signals from such small surfaces are not available [1]. 
These disabilities have been overcome by combining ultrasound with photoacoustic imaging 
and the detection of lipid-laden plaque was achieved by providing both morphological 
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and lipid-specific chemical information about the human coronary artery [2]. Similarly, 
intravascular implementation of photoacoustic imaging provided characterization of spatial 
and quantitative features of lipid-rich aortic plaques [3]. In photoacoustic microscopy (PAM) 
typically, nanosecond lasers excite the tissue, and absorbed photons lead to pressure waves via 
thermoelastic expansion [4]. Ultrasonic transducers capture the emerged pressure waves and 
produce the map of optical absorbers located within the tissue. Since ultrasonic waves scatter 
less in biological tissue as opposed to visible portion of electromagnetic spectrum, whole 
body imaging is possible with a tomographic approach [5]. To increase the penetration even 
further, lasers operating in the near infrared region are preferred for excitation where tissue is 
relatively transparent. Besides, targeted contrast agents are used to enhance the contrast of the 
micro-meter sized formations within tissues for early detection and therapy [6,7]. 

	 Scanning acoustic microscopy (SAM) is an imaging modality giving information about 
the morphology and the mechanical properties of the specimen simultaneously at microscopic 
levels. Focused high-frequency ultrasound signals are used to identify the elastic properties 
of biological tissues. One advantage of SAM over other imaging techniques is no need for a 
special staining. Besides, capture of an image of an area of around 5 mm x 5 mm is possible 
in a couple of minutes. Either the speed of sound (SOS) through tissues [8-17] or acoustic 
impedance of samples [18,19] can be calculated by SAM and two-dimensional distributions 
are mapped. Similarly, cells and organelles can be resolved by acoustic microscopy using 
higher frequencies of 100 to 1200 MHz [20-27]. Combining SAM and PAM will result in 
obtaining characterization of tissues in 3 dimensions with a micrometer resolution.

3. Scanning Acoustic Microscopy

	 SAM is mainly composed of a transducer with an ultrasonic lens, a pulser/receiver, an 
oscilloscope and a computer with a display monitor. Transducer, mounted on an X-Y stage 
controlled by the computer, generates acoustic waves and also receives the reflected waves. 
Medical transducers use piezoelectric crystals to generate and receive ultrasound and in most 
of the ultrasound imaging systems, transducers having resonant frequencies in the range of 
1-20 MHz are plugged. The frequency has an influence on the image quality and therefore 
resolution. A matching layer is necessary for acoustic pulse to be transmitted, without a loss, 
to the tissue or cell under investigation. More generally, water is chosen to be the coupling 
medium between the ultrasonic lens and the specimen. Oscilloscope is used to analyze the 
signals reflected from the surface of the specimen and received by the transducer. Finally, the 
two-dimensional maps of the samples are constructed using either sound speed mode (Figure 
1) or acoustic impedance mode (Figure 2) of the microscope. 
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Figure 1: Schematic of SAM setup in sound speed mode. 

Figure 2: Schematic of SAM setup in acoustic impedance mode.

	 In sound speed mode, the interference of acoustic reflections from the tissue surface 
(front) and the interface between the tissue and the substrate (rear), as can be seen in Figure 3, 
is received by the transducer and sound speed distribution within the target is constructed. 

Figure 3: Principle of SAM in sound speed mode. The acoustic waves reflected from the surfaces of distilled water 
and the tissue are collected by the same transducer and compared for the calculation of the acoustic impedance of the 
tissue.

	 The reflected waveform from the specimen has two components, which are reflections 
from the front and rear sides of the target, and it is not easy to separate these two independent 
signals. The analysis in frequency domain, by Fourier transforming the waveform, will enable 
calculation of intensity and phase spectra [28]. The following expressions at any frequency f 
are derived.

(1)

(2)
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(3)

(4)

Figure 4: SAM images of a fibrocalcific plaque sample. Top left image is the intensity image. Top right image is the 
sound speed map of the sample. Bottom left image is the attenuation map within the plaque. Bottom right is the thick-
ness map of the sample, indicating an average thickness of 5 μm.

	 where d, c_0,ϕ_front  and ϕ rear are target thickness, sound speed of water and phase 
angles obtained from the front and rear peaks, respectively. The thickness and sound speed at 
frequency f are calculated as 

	 In acoustic impedance mode, image is constructed using the acoustic reflections from 
both surfaces of the reference (water) and the target cross-section on the substrate (Figure 5). 
The 2-dimensional distributions indicate different acoustic properties due to the variation of 
elasticity within the targets. 

Figure 5: Principle of SAM in acoustic impedance mode. The acoustic waves reflected from the surfaces of distilled 
water and the tissue are collected by the same transducer and compared for the calculation of the acoustic impedance 
of the tissue.

	 SAM in acoustic impedance mode measures the acoustic impedance of the target by 
comparing the reflected signal from the tissue with the one from the reference. The reflected 
signal from the reference is
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(5)

	 where S_0  is the signal generated by the transducer of SAM, Z_ref is the reference’s 
acoustic impedance (1.50 MRayl) and Z_sub  is the substrate’s acoustic impedance. The signal 
reflected by the target is 

(6)

	 Consequently, the target’s acoustic impedance is calculated as

(7)

Figure 6: Acoustic impedance map of an atherosclerotic plaque obtained by comparing the reflected ultrasound signals 
from the surfaces of water (bottom left corner) and the sample. The scanning area is 4.8 mm x 4.8 mm.

4. Photoacoustic Microscopy

	 Photoacoustic microscopy (PAM) combines optical and ultrasound imaging. In this 
technique, a pulsed laser, typically, a nano-second laser, excites the tissue and absorbed 
photons lead to pressure waves via thermoelastic expansion. Ultrasonic transducers capture 
the emerged pressure waves and produce the map of optical absorbers located within the 
tissue. Since ultrasonic waves scatter less in biological tissue as opposed to visible portion of 
electromagnetic spectrum, penetration depth is much better. PAM is named optically resolved 

Figure 6 shows the acoustic impedance map of a fibrocalcific atherosclerotic plaque [30].  
This image was constructed using the acoustic reflections from both surfaces of the reference 
(water) and the plaque cross-section on the polystyrene substrate and operating SAM in acoustic 
impedance mode. The acoustic impedance distribution indicated different acoustic properties 
due to the variation of elasticity within the atherosclerotic plaques. The acoustic impedance 
was determined to be less than 2 MRayl for the collagen-rich areas and greater than 2 MRayl 
for the calcified areas. 
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Figure 7:  A representative OR-PAM schematic. The sample is scanned with a nano-second laser which is a frequency 
doubled fiber laser (second harmonic generation-SHG) operating at 532 nm. A transducer with a 3.5 MHz center 
frequency is used for the detection of acoustic signals.

Figure 8: a) Digital image, b) normalized acoustic impedance map, and c) photoacoustic image of the fibrocalcific 
atherosclerotic human plaque.

5. Conclusions

	 Here, we discuss the abilities of the acoustic imaging modalities of SAM and PAM, 
by comparing their capabilities on the determination of plaque components of atherosclerotic 
fibrocalcific human plaques. The collagen-rich and calcific regions within the plaques are 
discriminated successfully. SAM and PAM monitor the microcalcifications. SAM provides 
micrometer resolution in morphology and also mechanical information about the samples.  
Acoustic impedance maps of the samples show clearly different values in collagen-rich and 
calcified regions.  PAM is also capable of differentiating calcific regions from collagen-
rich regions by exhibiting different signals with the chosen excitation source wavelength. 
Consequently, SAM and PAM seem successful since they are capable of acquiring morphological 
and chemical information about the plaques simultaneously and usable in clinics. However, 
for in vivo studies, an intravascular probes, similar to intravascular ultrasound (IVUS) probe, 
have to be developed. 

photoacoustic microscopy (OR-PAM), when focused spotsize on the sample determines the 
resolution of the imaging system. A schematic of OR-PAM is given in Figure 7. The sample 
is scanned with a nano-second laser, which has a suitable wavelength for the excitation of the 
target under investigation. A transducer is used for the detection of acoustic signals created by 
the target material. Finally, the maps of samples are constructed. In Figure 8, calcific regions 
with greater acoustic impedance values (Figure 6) is also discriminated by PAM. 
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