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Studies on Components of Blood 
& Their Functions

1. Coagulation Pathway

	 Blood coagulation is initiated as a response to vascular damage. Vascular injury exposes 
the integral membrane protein tissue factor (TF) [1,2] which binds the circulating coagulation 
factor VIIa (FVIIa) [3] and forms the TF-FVIIa complex. This complex activates FX [4,5] to 
FXa, which subsequently assembles with its cofactor factor Va (FVa) in presence of calcium 
ions and an appropriate phospholipid surface into the so-called prothrombinase complex. The 
prothrombinase complex converts the zymogen prothrombin into its active form thrombin. 
Thrombin is a serine protease with several functions in hemostasis, which amongst others 
catalyzes the conversion of fibrinogen to fibrin and induces the aggregation of blood platelets 
resulting in the formation of stable thrombus consisting of aggregated platelets consolidated 
by a network of fibrin fibers.

	 Blood coagulation is carefully regulated by the positive and negative feedback loops 
that balance the clot formation (Fig. 1). The initial thrombin molecules that are formed by 
extrinsic coagulation pathway activate the coagulation factors FV, FVIII and FXI leading to 
propagation of coagulation cascade [6-8]. FVIIIa is a cofactor of activated FIX (FIXa) a serine 
protease that is formed by activation of FIX via either FXIa [9,10] or TF-FVIIa [5,11,12]. 

	 The hemostasis is regulated by the anticoagulant pathways, by ensuring to limit the 
thrombin formation and hemostatic plug at the site of vessel damage. The major anticoagulant 
proteins identified in plasma are tissue factor pathway inhibitor (TFPI), protein C, protein 
S, antithrombin (AT), α2-macroglobulin, and the protein Z-dependent protease inhibitor. The 
complete absence of the major anticoagulant systems (TFPI, protein C/protein S or AT) leads 
to extensive fibrin deposition as well as bleeding due to consumptive coagulopathy and is not 
compatible with life [13-15]. Out of all, one of the most important anticoagulant proteins is 
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TFPI [16], a protease inhibitor that regulates at the initiation of blood coagulation by binding 
and inhibiting FXa [17] and TF-FVIIa [18] thereby shutting down the extrinsic coagulation 
pathway.

2. Tissue Factor Pathway Inhibitor 

	 The TFPI gene is localized on chromosome 2 in region 2q32 [19,20]. The translated 
product of the tfpi gene (304 a.a. long) is subjected to removal of signal sequence (28 a.a) to 
give a mature 276 amino acid long TFPI protein called TFPIα [16,21]. Alternative splicing of 
TFPI mRNA results in TFPIβ, an isoform of TFPI [22,23].

	 TFPIα is an endogenous Kunitz type serine protease inhibitor with an acidic amino 
terminus followed by three tandem Kunitz domains (K1-Asp13-Arg78, K2-Glu92-Gly150, 
K3-Glu182-Lys241), each containing 3 disulphide bonds that pair in the pattern 1 to 6, 2 to 
4, 3 to 5 and a basic carboxy terminus [16]. The molecular mass of TFPIα is 32 kDa but post-
translational modifications result in an increase of mass of 43 kDa [24]. The post-translational 
modifications of TFPIα do not seem to be important for the inhibition of FXa or the TF-FVIIa 
complex, but they may influence its plasma clearance and cell binding properties [25,26]. 
TFPIβ lacks KD3 and has a different C-terminus. A GPI anchor is attached to this C-terminus 
that covalently associates TFPIβ to the endothelium [27].
	 TFPI expression and distribution: TFPIα, which is subject of this chapter and which 
we will call TFPI from here on, is produced constitutively by microvascular endothelial cells 
[28], vascular smooth muscle cells [29], expressed by liver and monocytes/macrophages [30]. 
It is distributed in the endothelium (50–80%), plasma (10–50%) and platelets (less than 2.5%) 
[31,32]. Normal human plasma contains full length and variably truncated carboxy-terminal 
forms of TFPI [33]. In vivo, approximately 80% of plasma TFPI circulates in complex with 
plasma lipoproteins [18,34]. Unlike plasma TFPI, platelet TFPI is exclusively full length. It is 
known that local TFPI concentration increases at the site of vascular injury. This TFPI released 
by platelets accumulated within the thrombus that makes platelet TFPI a potent anticoagulant 
and prevents unnecessary thrombus formation [35]. TFPI has a rather short half-life of 60–120 

Figure 1: Blood coagulation cascade: Initiation, propagation, termination and degradation.
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min [36,37]. The total TFPI concentration in normal human plasma, which includes the variably 
truncated form of TFPI, is about 1.0–2.5 nM [34,38] and the full length TFPI concentration in 
plasma is 0.25-0.5 nM [31]. Castoldi and coworkers reported that at least part of the full length 
TFPI present in plasma circulates in complex with protein S [39] and FV [40]. 

	 TFPI anticoagulant function: The anticoagulant function of TFPI involves binding to 
and inhibition of FXa which can directly contribute to the down-regulation of coagulation 
[41]. TFPI can also bind and inhibit TF-FVIIa, a reaction that is greatly stimulated by FXa and 
that results in the rapid formation of a tight quaternary TFPI-FXa-TF-FVIIa complex [17,42]. 
Detailed kinetic studies indicated that inhibition of TF-FVIIa actually occurs after binding of 
TFPI to the ternary TF-FVIIa-FXa complex that is generated during FX activation [43]. By 
targeting TF-FVIIa and FXa, TFPI directly and efficiently inhibits the initiation of coagulation. 
It is well established that the K2 domain binds to FXa, K1 binds to FVIIa [18] and that the K3 
domain is essential for binding to its cofactor protein S which in the presence of phospholipids 
and Ca2+-ions enhances FXa inhibition by TFPI reported by Hackeng et al [44]. The binding of 
TFPI to FV [40], which results from an interaction between the C-terminus of TFPI [45] and 
an acidic region in the C-terminus of the B-domain of FV [46-48] may also contribute to the 
anticoagulant activity of TFPI in plasma because Wood et al. [48] reported that binding of TFPI 
to FVa that was activated by FXa is associated with inhibition of prothrombin activation. 

	 Biochemistry of inhibition: TFPI inhibits FXa via a two-step mechanism known as slow-
tight inhibition. Slow-tight inhibitors are characterized by the rapid formation of an initial 
encounter complex (FXa•TFPI) followed by a slow conversion into a tight FXa•TFPI*complex 
(Fig. 2) [42,49,50]. Both initial encounter complex and tight complex formation are dependent 
on the concentration of TFPI and when the TFPI concentration increases both the rate and 
extent of FXa inhibition increases. The shape of progress curves of inhibition obtained with 
the slow-tight binding inhibitors is biphasic [42,50].

	 Inhibition of FXa by TFPI is modulated by several components that bind to either FXa 
or TFPI or both. Table 1 summarizes the effects of major modulators on the Ki and Ki

* of FXa 
inhibition by TFPI.

Figure 2: Slow-tight binding mechanism for inhibition of FXa by TFPI.
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Table 1: Effects of Ca2+, phospholipids and protein S on Ki and Ki
* of FXa inhibition by TFPI (Kinetic constants for FXa 

inhibition by TFPI).

Addition Ki (nM) Ki
* (nM)

None 1.24a 0.026a

Ca2+ 42.7a 0.085a

Ca2+ + PL 4.4b, 14.6a 0.05b, 0.018a

Ca2+ + PL + protein S 0.5b 0.02b

a(49); b(44)

3. Role of Different Kunitz Domains of TFPI in Inhibiting FXa

	 As described above K2 binds to FXa, K1 binds to FVIIa and K3 had no function apart 
from binding to its cofactor. However, Peraramelli et al.[51] investigated the role of the three 
Kunitz domains (K1, K2 and K3) and the C-terminal domain of TFPI in FXa inhibition and 
showed that TFPIFL (TFPI full length), TFPI1–161 (truncated at 161 a.a) and K1K2 had biphasic 
curves of FXa inhibition indicative for the two-step slow-tight inhibition mechanism, whereas 
K2 and K2K3 of TFPI rapidly but less effectively inhibited FXa in a monophasic manner (Fig. 
3). Since TFPIFL, TFPI1–161 and K1K2 contain the K1 domain and K2 and K2K3 both lack 
K1, this indicates that the K1 domain of TFPI not only functions in FVIIa inhibition [52], but 
also supports the slow transition from the weak encounter to the tight FXa•TFPI* complex. 
However, TFPI1–161 and K1K2 inhibited FXa with a considerably higher Ki value (> 40 nM), 
than TFPIFL (4.2 nM) emphasizing the role of the K3 + C terminus domain in the formation 
of initial encounter complex. Interestingly, K2K3 was a much better FXa inhibitor (Ki = 3.6 
nM) than K2 alone (Ki = 21 nM), which suggests that the K3 domain promotes the formation 
of the initial encounter complex. Therefore, all the kunitz domains are essential for efficient 
inhibition of FXa. 

 
Figure 3: Pictorial representation of FXa inhibition by different kunitz domains of TFPI. V0 indicates the initial encounter 
complex formation and Vs indicates the steady state tight complex formation.
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4. TFPI as Target in Hemophilia Treatment

	 TFPI is not only associated with an increased risk of VT, but also plays role in bleeding. 
Considering its important role in maintaining the hemostatic balance, TFPI may also be a 
target for the treatment of patients with congenital bleeding disorders like haemophilia A 
or haemophilia B. Haemophilia A or B are caused by a deficiency or complete absence of 
coagulation factor VIII (FVIII) or factor IX (FIX), respectively. Both haemophilia A and 
haemophilia B are X-linked disorders which represent the large majority of inherited deficiencies 
of coagulation factors, occurring in ~0.02% and 0.002% of male population, respectively, 
without any racial predisposition (25). An indication of severe haemophilia is bleeding in 
soft tissue and joints leading to joint damage despite on-going treatment. Prophylaxis, that is 
infusion of clotting factors, has been used for treating haemophilia for a long time but is not 
universally implemented because these treatments are expensive; require intravenous infusion 
and formation of inhibitors is typical. Alternative therapies, like targeting and inhibiting 
natural anticoagulants such as TFPI (26), activated protein C (27, 28) or antithrombin (29) 
may have the potential advantages of lower cost, oral administration, and absence of inhibitor 
formation. 

	 It is interesting to note that amongst the TFPI antagonists that are currently in development 
for haemophilia treatment there are compounds that target different Kunitz domains of TFPI 
i.e. Kunitz domain 1 [53] or Kunitz domain 2 [54]. As discussed above the role of the different 
Kunitz domains of TFPI in the inhibition of FXa and TF-FVIIa is rather complex and not 
limited to inhibition of FVIIa by Kunitz 1 and FXa by Kunitz 2. The Kunitz 3 domain promotes 
the formation of the initial encounter complex and is required for the expression of protein S 
cofactor function and that the Kunitz 1 domain is necessary for isomerization of the loose 
encounter into the tight FXa-TFPI complex. These observations provide important information 
for developing TFPI antagonists that efficiently can block TFPI. For instance the Kunitz 1 
requirement for isomerization step explains why a peptide that is directed against the Kunitz 1 
domain of TFPI [53] is a partial TFPI inhibitor, which allows rapid formation of the encounter 
complex and only prevents the isomerization to the tight complex. Considering the two-step 
mechanism of FXa inhibition by TFPI one would predict that TFPI antagonists that knock 
out the function of both the Kunitz 1 and Kunitz 2 domains would be more effective TFPI 
inhibitors. These observations support the notion that detailed knowledge of the mechanism of 
action of TFPI is important for the design of tailor-made TFPI antagonists for the treatment of 
bleeding disorders.
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