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1. Introduction

	 Multidrug resistance (MDR) or chemo-resistance is a serious phenomenon utilized by 
cancer cells that hinder the success of cancer chemotherapy. Owing to the chemo-resistance 
to antineoplastic drugs, either by acquired or intrinsic mechanisms, the 5-year survival rates 
remain dismal despite the significant advances in the field of chemotherapy [1]. This was first 
demonstrated in 1973, where it was found that Ehrlich ascites cells lowered the intracellular 
daunorubicin concentration by active outward transport [2]. Later it was discovered that the 
large glycoprotein, now known as multidrug resistance proteins (MRP), in the plasma mem-
brane of MDR cells is responsible for the active outward transport of antineoplastic drugs [3, 
4]. The identification of drugs and conjugates efflux pumps of MRP family was started with 
the discovery of MRP1 in 1992 [5].

	 Multidrug resistance proteins are the subfamily of the transmembrane transporters su-
perfamily ATP- binding cassette (ABC) [6,7]. It is the largest family of transmembrane pro-
teins which use the energy of ATP hydrolysis to drive a wide range of organic and anionic 
conjugates such as sulfate, glutathione, glucuronide conjugates and leukotriene C4 across the 
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cell membranes [7]. Based on the alignment and phylogenetic analysis with a number of meth-
ods, the ABC superfamily can be categorized into seven major subfamilies [6]. The multidrug 
resistance proteins or ATP binding cassette subfamily C (ABCC) is one of the seven major 
subfamilies. 

	 MDR uses various mechanisms for the transport of drugs which can be classified as 
target dependent and drug dependent [8]. Target dependent multidrug resistance mechanism 
mainly uses factors which cause deletion, mutation and translocation to the target of drugs [9]. 
Drug dependent MDR is caused by the overexpression of detoxifying enzymes and efflux drug 
transporters which results into increased efflux of drugs from cell [10]. The aim of this chapter 
is to discuss the general properties such as structural and functional and to highlight the role of 
MRPs in cancers cells.

2. General characters of MRPs

	 The MRP subfamily contains nine members of drug transporters. All the members of the 
subfamily may have multiple names as several laboratories characterized the MRP family as 
displayed in Table 1. Based on the presence or absence of extra N-terminal membrane span-
ning domain (MSD), the MRPs are of two types. MRP1, MRP2, MRP3, MRP6 and MRP7 
falls into one category which contains an extra N-terminal MSD as presented in Figure 1 
whereas rest of the MRPs contains only two MSDs i.e. MSD1 and MSD2 (Figure 2). 

Figure 1: Domain organization of MRP1, MRP2, MRP3, MRP6 and MRP7 with extra N-terminal membrane spanning 
domain and 17 transmembrane α-helices (MSD–Membrane Spanning Domain; NBD–Nucleotide Binding Domain; CLs 
– Cytoplasmic Loops)

Figure 2: Domain organization of MRP4, MRP5, MRP8 and MRP9 without extra N-terminal membrane spanning do-
main and 12 transmembrane α-helices (MSD–Membrane Spanning Domain; NBD–Nucleotide Binding Domain; CLs 
– Cytoplasmic Loops)
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	 Along with all MSDs, the MRPs also have two cytoplasmic nucleotide binding domains 
(NBDs) and the 17 transmembrane α-helices in case of three MSDs whereas 12 transmem-
brane α-helices in case of two MSDs [7,11,12]. The binding and the hydrolysis of ATP at 
NBDs is required for the passage of substances across membrane.

	 The amino acid sequence lengths of MRP subfamily range between 1325 amino acids 
for MRP4 to 1545 amino acids for MRP2 (Table 1). As compared to MRP1, the amino acid 
percent identity of MRP3 shares 58 % which is closest member to MRP1 along with MRP2. 
While the MRP4 and MRP5 shares below 40 % identity which appear to lack the extra N-
terminal MSD [13,14]. Furthermore, several studies have revealed that the extra N-terminal 
MSD is not essential for the transport of drugs across the membrane [14].
Table 1: The human multidrug resistance protein family and some general characters 

S. No. Name
Synonyms/ 

Symbols
Chromosomal 
Localization

Amino 
acids

Amino acid 
identity

Protein Acces-
sion number

References

1. MRP1
ABCC1, 

GS-X
16p13.11 1531 100 NP_004987 [5, 15]

2. MRP2
ABCC2, 

cMRP, DJS
10q24.2 1545 50 NP_000383 [16, 17]

3. MRP3

ABCC3, 
cMOAT2, 

EST90757, 
MLP2, 

MOAT-D

17q21.33 1527 58 NP_003777 [18, 19]

4. MRP4

ABCC4, 
EST170205, 

MOAT-B, 
MOATB

13q32.1 1325 41 NP_005836 [19, 20]

5. MRP5

ABCC5, 
EST277145, 

MOAT-C, 
SMRP

3q27.1 1437 38 NP_005679 [18, 19]

6. MRP6
ABCC6, 

EST349056, 
MLP1, URG7

16p13.11 1503 46 NP_001162 [21, 22]

7. MRP7
ABCC10, 

EST182763, 
SIMRP7

6p21.1 1492 35 NP_258261 [19]

8. MRP8 ABCC11 16q12.1 1382 33 NP_149163 [7, 23]

9. MRP9 ABCC12 16q12.1 1356 36 NP_150229 [7, 23]

3. Overview of the MRP Family

	 The localization and distribution of multidrug resistance proteins vary in different hu-
man tissues as their expression pattern is cell and tissue type specific such as kidney, lung, 
skeletal and cardiac muscles specific. To understand the function of the MRPs efflux pump, it
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is required to see the domain-specific localization of MRPs in various cell types. Along with 
the localization and distribution of MRPs, it is also needed to know the substrates of the mem-
bers of MRP family. The amphiphilic organic anions of molecular mass between 0.3 to 1.0 
kDa are the substrates of the MRP subfamily members [11,12]. Table 2 summarizes the loca-
tion of members of MRPs and their substrates. 

3.1. MRP1

	 The MRP1 or ABCC1 is localized mainly in the cells of blood-tissue barriers which 
is shown by the immunofluorescence and immunohistochemical analysis [24]. It is highly 
detectable in several human cells and tissues such as macrophages, kidney, lung, placenta, 
testis, umbical cord, skeletal muscles, cardiac muscles and gestational tissue [12,25]. During 
pregnancy, MRP1 expression level changes have been associated with pre-term birth, growth 
restriction, and pre-eclampsia [26]. There is lack of detectable amount of MRP1 in normal 
hepatocytes but in proliferating hepatocyte-derived cells MRP1 appears to be upregulated [12, 
27]. The cells that do not express MRP2, MRP1 plays an important function in detoxification 
from those cells [12].

	 The first physiological substrate of MRP1 to be identified was the cysteinyl leukotriene 
LTC4. This finding was discovered during the search for the efflux pump that cause the release 
of LTC4 from mastocytoma cells [28]. Later by the studies in Abcc1-/- mice it was confirmed 
that LTC4 is a physiologically relevant substrate [29]. MRP1 can identify a wide range of sub-
strates by making a single bipartite substrate-binding site. The substrate binding site of MRP1 
can be categorized into two parts – one with the positively charged region that directs the GSH 
moiety and other with the hydrophobic area that incorporates the lipid tail [30]. Glutathione 
containing LTC4, which is high affinity MRP1 substrate, discovery preceded the finding of 
several glucuronosyl and S-glutathionyl substrates for MRP1 as displayed in Table 2. Another 
MRP1 substrate, oxidized glutathione (GSSG) with comparatively low affinity suggests the 
role of MRP1 against oxidative stress [12,31]. GHS plays various role in MRP1-mediated 
transport such as it act as co-substrate together with the other compounds like Vinca alkaloids. 
Moreover, it plays a role as transport enhancer without being co-transported itself in case of 
glucuronidated and sulfated conjugates [32]. 

3.2. MRP2

	 The second member of MRP subfamily, MRP2, was first localized in the canalicular 
membrane of the human and rat hepatocytes [33] and afterward in the apical membrane of rat 
and human kidney proximal tubules [34,35], placenta [36], small intestine [37], colon [38], 
gall bladder [39] and bronchi segments [38]. In various human cells and tissues such as blood-
brain barrier, pancreas and skin the expression of MRP2 protein either remain below detection 
limit or remain absent. The apical localization of MRP2 remain in line with its function in the 
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efflux of many endogenous substance and phase II conjugation product of drugs into extracel-
lular fluids including urine, bile and intestinal fluid.

Table 2: Tissue distribution and substrates of human multidrug resistance proteins

S. No.
Members of MRP 

subfamily
Location of MRPs in human body Substrates of MRP transporters

1. MRP1
Macrophages, kidney, lung, testis, pla-

centa, umbical cord, skeletal and cardiac 
muscles

Leukotriene C4, Leukotriene D4, Glutathione 
disulphide, GSH, S-Glutathionyl prostaglandin 

A2, Glutathionyl melphalan, Estrone 3-sulphate, 
Bisglucuronosyl bilirubin, folate, cobalamin-OH

2. MRP2
Liver, kidney, small intestine, colon, gall 

bladder, placenta, segment of bronchi

Leukotriene C4, Mono- and Bisglucouronosyl bili-
rubin, 17β-glucuronosyl estradiol, cholecystokinin 

peptide, Estrone 3-sulfate

3. MRP3
Gut, Liver, kidney, adrenals, colon, 

spleen and pancreas

Leukotriene C4, Mono- and Bisglucouronosyl bili-
rubin, 17β-glucuronosyl estradiol, Cholyglycine, 

Dehydroepiandrosterone 3-sulfate

4. MRP4
Prostate, testis, ovary, lung, muscle, gall 

bladder and pancreas

Leukotriene C4, B4, Prostaglandin E2, F2α, 
Thromboxane B2, , 17β-glucuronosyl estradiol, 
cGMP, cAMP, Cholyltaurine (+GSH), cholate 

(+GSH), Folate, Urate, ADP

5. MRP5
Urethra, heart, placenta, blood brain 

barrier

Methotrexate, cGMP, cAMP, Folate, 2’-Deoxyuri-
dine 5’-monophosphate, 9-(2-Phosphonomethoxy-

ethyl)adenine (PMEA)

6. MRP6 Kidney and Liver Leukotriene C4, S-Glutathionyl N-ethylmaleimide

7. MRP7-9 Cerebral cortex and Secretory cells
17b-Glucuronosyl estradiol, Leukotriene C4, 

Dehydroepiandrosterone 3-sulfate, cGMP, cAMP, 
Folate, Cholylglycine

	 MRP2 and MRP1 substrates are quite similar, however the kinetic properties are differ-
ent i.e. the Km values of MRP1 for 17β-glucuronosyl estradiol and LTC4 are five and tenfold 
lower, respectively, than those for MRP2 [40]. Similarly, MRP2 have higher affinity for the 
mono- and bisglucuronosyl bilirubin as compared to the MRP1 [41]. Additionally, as com-
pared to MRP1, MRP2 have low affinity for the transport of GSH and GSSG [42]. The amino 
acid identity of both MRPs i.e. MRP1 and MRP2, is only 50% (Table 1). Thus the similar 
substrate specificity was initially unexpected, however advancement in the research leads to 
the finding of the similar structural determinants for substrate binding of both proteins which 
are responsible for the similar substrates [12]. 

3.3. MRP3

	 ATP-dependent efflux transporter mainly MRP3 localized to basolateral (sinusoidal) he-
patocyte membrane which transport compounds from hepatocytes to sinusoidal blood [43]. It 
was initially demonstrated in the human and rat hepatocytes [44,45] and now localized in sev-
eral human cells and tissues including cholangiocytes, pancreas, kidney, enterocytes, spleen, 
gall bladder and adrenal cortex [12,43]. The level of MRP3 in human liver may fluctuate upto
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80 fold among people. In hereditary MRP2 deficiency and different types of cholestatic liver 
disease, the MRP3 level increases which leads to elevated serum concentration of bilirubin 
glucuronosides [46].

	 MRP3 transports a broad range of xenobiotics and endogenous organic anions, mostly 
conjugated as presented in Table 2. Mono- and bisglucuronosyl bilirubin efflux across the 
basolateral membrane of hepatocytes into sinusoidal blood is MRP3-mediated transport [47]. 
It also transports methotrexate in addition to LTC4 and S-(2, 4-dinitrophenyl) glutathione. Hu-
man MRP3 transports bile acids (e.g., cholylglycine, cholyltaurine, and sulfatolithocholyltau-
rine) with low affinity in case of bile acid cholylglycine or below detectability in case of bile 
acid cholyltaurine [48]. However, the MRP3 of rat transports bile acids with high affinity [49]. 
This indicates that the MRP3 substrates are species specific, particularly for bile acids.

3.4. MRP4

	 The MRP4 protein is expressed in a variety of polarized cells and localized in the api-
cal and basolateral membrane domain [43]. Initially it was localized in the glandular epithelial 
cells of the prostate gland in basolateral membrane [50]. Additionally MRP4 protein express 
in platelets [51], erythrocytes, astrocytes, adrenal glands and in many cultured cell lines used 
for the transfection studies such as V79, HEK293, HL60 and HeLa [12,52]. Moreover, MRP4 
localization is detected in human and rat hepatocytes, choroid plexus epithelial cells and in 
polarized MDCKII cells [53-56].

	 The substrates first identified for MRP4 protein were the nucleosides monophosphate an-
alogs used as antiretroviral drugs, mainly the 9-(2-phosphonylmethoxyethyl)adenine (PMEA) 
[57]. In delta granules of human platelets, MRP4 mediates the ADP transport which results 
into accumulation of ADP in delta granules [58]. In addition, the cGMP, cAMP and LTC4 are 
the important physiological substrate for the MRP4. Other MRP4 protein substrate includes 
eicosanoids such as prostaglandins E1, E2 and F2α and leukotrienes C4 and B4 [52]. 

3.5. MRP5

	 Localization of MRP5 has been detected in basolateral membrane of polarized epithelial 
cells. However in brain capillary endothelial cells, MRP5 aka ABCC5 is detected in apical 
membrane [59]. Relatively higher level of MRP5 protein has been demonstrated in smooth 
muscle cells, astrocytes and in various tissues of human genitourinary system [59]. Further-
more MRP5 protein expresses in epithelial cells of urethra [60], endothelial cells of heart [61] 
and in fetal vessels of placenta [62].

	 MRP5 protein substrates includes anionic dye fluorescein diacetate, a number of nu-
cleosides monophosphate analogs, the cyclic nucleotides cGMP and cAMP and some GSH 
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S-conjugates [63,64]. MRP5 mediated transport is inhibited by various phosphodiesterase in-
hibitors some of which are structurally similar to cGMAP. MRP5 along with the MRP4 may 
contribute to regulation of cAMP and cGMP tissue level. Moreover, the affinity of MRP5 to 
cAMP and cGMP seems to vary depending upon the cellular system [11]. 

3.6. MRP6

	 MRP6 protein is highly expressed in the basolateral membrane of human and rodent he-
patocytes and epithelial cells of proximal tubule of kidney [65]. Recently it has been identified 
that MRP6 acts as basolateral efflux pump for nucleotides mainly ATP which after hydrolysis 
by ecto-enzymes leads to extracellular pyrophosphate [43]. 

	 MRP6 protein of inside-out vesicles transports the glutathione S-conjugates LTC4 and 
NEM-SG and BQ-123 with low affinities [66]. MRP6 mutation leads to a serious genetic dis-
order, Pseudoxanthoma elasticum (PXE), with ectopic mineralization affecting eye, skin and 
cardiovascular system. This is hypothesized that PXE is a consequence of hepatic accumula-
tion of MRP6 substrate(s) as it seems that MRP6 remain absent in the affected organs whereas 
a high expression is seen in hepatocytes [67]. 

3.7. MRP7-9

	 On the basis of mRNA analysis it is assumed that the MRP7-9 are expressed widely in 
various human cell types and tissues [12]. MRP8 was detected in axonal membrane of neurons 
in human cerebral cortex and in the HepG2 apical membrane [68]. Additionally, MRP8 protein 
express in the luminal membrane and large vacuoles of secretory cells such as apocrine sweat 
glands [12,69,70].

	 A number of substrates are mediated by the MRP7 protein including 17β-glucuronosyl 
estradiol and LTC4 [12]. It also confers the low level of resistance to Vinca alkaloids and pa-
clitaxel [71]. MRP8 mediates the transport of a number of physiological substrates including 
dehydroepiandrosterone 3-sulfate, LTC4, cholylglycine, cyclic nucleotides, 17β-glucuronosyl 
estradiol and folate. Recently a new substrate, Tenofovir disoproxil fumarate, of MRP8 is 
identified which is a nucleotide reverse transcriptase inhibitor [72]. The substrate of MRP9 has 
not been detected so far [12].

4. Role of MRPs in Cancer

	 MRPs are the proteins which are responsible for the resistance of cancer cells to a broad 
variety of mechanistically and structurally anticancer drugs. The chemotherapeutic failure is 
the result of either intrinsic resistance or acquired resistance of cancers cell which leads to 
the malignant tumor progression [73]. The major mechanism of multidrug resistance can be 
categorized into various groups such as inhibition of apoptosis pathways, metabolic modifica-
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tion, activation of DNA repair, decreased drug influx, altered drug targets, and detoxification, 
increased drug efflux mainly via MRP subfamily transporters and via higher expression levels 
of these efflux transporters [8,74]. These efflux transporters or efflux pumps reduce the con-
centration of several intracellular exo- and endotoxins via the above-mentioned mechanisms. 

	 Recently, an overexpression of members of MRP subfamily, particularly MRP1 and 
MRP8, was reported in the aggressive breast carcinoma subtypes [75]. Similarly overexpres-
sion of MRP1, MRP2 and MRP3 was observed in lung cancer patients [76]. The expression 
level of these pumps varies based on the lung cancer subtypes i.e. In non-small cell lung cancer 
(NSCLC) cell lines, higher expression of MRP1, MRP2, and MRP3 was found than small cell 
lung cancer (SCLC) cell lines, with the highest level of MRP3 [76]. Additionally, the decrease 
in drug sensitivity towards etoposide, cisplatin, vincristine and doxorubicin in lung cancer 
patients is owing to overexpression of MRP1 and MRP3. Likewise in colorectal carcinoma, 
the levels of MRP1 and MRP2 are found to be higher [77]. As compared to the patients who 
respond to chemotherapy, there is higher expression of MRP6 and MRP8 in non-responders. 
The overexpression of MRPs in drug resistance of specific types of cancer are summarized in 
Table 3.

	 RT-PCR and northern blotting exhibited the MRP1 overexpression in prostate cancer 
lines resistant to doxorubicin. Similarly, overexpression has also been detected by immuno-
histochemistry in pancreatic carcinoma cell lines and in renal cell carcinoma patients [78–80]. 
Recently, MRP7 and docetaxel-treatment failure were confirmed by ex vivo study where MRP7 
was greatly expressed in ER and Her2 breast cancers and to reverse MDR in chemotherapy, 
inhibition of MRP7 was suggested [81]. Therefore, in patients with high expression level of 
MRPs, to inhibit drug efflux function by developing modulators is a feasible approach. 
Table 3: MRPs overexpressed in drug resistance of specific types of cancer

S. No. Specific type of Cancer MRPs Overexpressed Reference

1. Breast cancer MRP1, MRP8 [75]

2. Non-small cell lung cancer MRP1, MRP2, MRP3 [76]

3. Small cell lung cancer MRP3, MRP5 [76,82]

4. Colorectal cancer MRP1, MRP2 [77]

5. Prostate cancer MRP1, MRP4 [78,83]

6. Pancreatic cancer MRP1 [79]

7. Renal cancer MRP1 [80]

4.1. Current strategies for MRP modulators 

	 In order to reverse the MRP-mediated MDR, several attempts have been performed. 
Recently a few approaches are being used to develop MRPs modulators to reverse MDR in 
chemotherapy such as off-target small molecular inhibitors as modulators and miRNA based 
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therapy [73]. 

	 MicroRNA (miRNA) is small RNA molecules of approximately 20-25 nucleotides in 
length which bind directly to 3’UTR of targeted mRNAs. Various miRNA based modula-
tors are being used such as miR-326, miR-297, miR-534 and miR-134. The overexpression 
of MRP1 mRNA and its protein was observed in the breast cancer cell line MCF-7/VP. On 
MCF-7/VP and MCF-7 cells, 17 of miRNAs were distinctly expressed by utilizing a microar-
ray consisting of human mature miRNA probes. All the expressed miRNA showed increased 
expression but miR-429, miR-92-2, miR-7, miR-187 and miR-326 exhibited decreased ex-
pression [84]. Quantitative RT-PCR result revealed that the decreased expression of miR-326 
was 3.3 fold less as compared to MCF-7 and the expression was inversely correlated with the 
MRP1 mRNA. It was observed that expression of MRP1 were lowered in miR-326 miRIDIAN 
mimic-transfected MCF-7/ VP cells [84]. From this finding, it was suggested that by blocking 
the MRP1, the miR-326 could strengthen the cytotoxic effect of doxorubicin on MCF-7/VP 
cells.

	 A number of small off-target molecular inhibitors are used as modulators of MRPs 
i.e. Ibrutinib as modulator of MRP1, Masitinib, Lapatinib, Imatinib, Erlotinib, Nilotinib and 
Tandutinib as Modulators of MRP7. MRP1 modulator ibrutinib can potentially block the efflux 
of doxorubicin in HL60/Adr cells which leads to increased intracellular doxorubicin accumu-
lation [85]. In recent years, it has been reported that Masitinib, Lapatinib, Imatinib, Erlotinib, 
Nilotinib and Tandutinib could reverse MDR in transfected HEK/MRP7 cells [73,86,87].

5. Summary

	 This chapter summarizes about the multidrug resistance proteins which are a subfamily 
of ATP dependent transporters, ABC family. The MRP family is the transmembrane proteins 
which use the energy of ATP hydrolysis to drive a wide range of organic and anionic conju-
gates such as sulfate, glutathione, glucuronide conjugates and leukotriene C4 across the cell 
membranes. The MRP subfamily contains nine members of drug transporters i.e. MRP1-9. All 
the members of the subfamily may have multiple names as several laboratories characterized 
the MRP family. The localization and distribution of multidrug resistance proteins vary in 
different human tissues as their expression pattern is cell and tissue type specific such as kid-
ney, lung, skeletal and cardiac muscles specific. The amphiphilic organic anions of molecular 
mass between 0.3 to 1.0 kDa are the substrates of the MRP subfamily members. The major 
mechanism of multidrug resistance can be categorized into various groups such as inhibition 
of apoptosis pathways, metabolic modification, activation of DNA repair, decreased drug in-
flux, altered drug targets, and detoxification, increased drug efflux mainly via MRP subfamily 
transporters and via higher expression levels of these efflux transporters. The chemothera-
peutic failure is the result of either intrinsic resistance or acquired resistance of cancers cell 
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which leads to the malignant tumor progression. Recently a few approaches are being used to 
develop MRPs modulators to reverse MDR in chemotherapy such as off-target small molecu-
lar inhibitors as modulators and miRNA based therapy. These recent strategies to engage the 
MRP transporters to enhance the cancer treatment reflect the creativity of cancer researchers 
and hopefulness that at least this basis of MDR can be defeated.
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