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Chapter 4

 Advances in Biotechnology

1. Introduction

	 Pregenomic era comprised of efforts to sequence genome and now in the post genomic 
era where we have greater than 1000 genomes available, science is heading toward extract-
ing valuable information from them. Sequencing has helped in revealing the hidden mean-
ing of nucleotide and protein sequencing. Shifting from the trends of the pregenomic era to 
post genomic era resulted in enormous data. In this chapter, we have explored the impact of 
advancements in genomics on organisms ranging from viruses to plants with focus on their 
applications in Biotechnology. In particular, we have discussed the influence of rapidly avail-
able sequencing data in exploiting the viruses for our benefit, especially in vaccine develop-
ment. In this regard, some Bioinformatics-based tools and software have been discussed. The 
Human Genome Project and its importance as an example and a motivation for other similar 
organism-specific large-scale sequencing projects has been highlighted. Finally, some aspects 
related to genomics-based Biotechnological aspects of plant sciences had been explored. We 
conclude that recent progress in genomics has brought about major breakthroughs in terms of 
applications of Biotechnology in different sectors such as vaccinology, proteomics, personal-
ized medicine, as seen in Figure 1.

	 The journey began in 1976, when RNA of E.coli infecting bacteriophage, MS2, was se-
quenced completely [1]. Following this discovery, a DNA containing bacteriophage, PhiX174, 
was sequenced by Sanger and his team [2]. It was the first DNA based genome that was se-
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quenced. PhiX174 was later used as a model organism in the ushering era of synthetic biology 
[3]. Sanger shot gun sequencing provided a platform to sequence genome with greater ease, 
but cost was a major constraint of this technique. In 1981, Cauliflower mosaic virus was se-
quenced and variation within the different strains were analyzed by using comparative genom-
ics [4]. In 2004, complete genome sequencing of mimivirus blurred the distinction between 
bacteria and viruses [5]. Unlike bacteria, viruses do not contain rDNA to study phylogenetic 
relationship, so a clone based sequencing strategy was used to sequence and classify uncultur-
able marine viruses [6]. The sequencing of these marine viruses gave insight into their role in 
biogeochemical cycles [7].

Figure 1: Advancements of Biotechnology in the postgenomic era in different sectors is illustrated.

2. Impact of Genomics in Virology

	 The development of Next Generation sequencing has brought about a revolution in the 
field of virology. Viral genomes, though rather small size, maintain their intellectual curiosity 
amongst scientists [8]. The emergence of pandemic viral infections such as H5N1 and H1N1 
also necessitated the availability of whole genome sequence to gain an insight into the evolu-
tion and molecular epidemiology of these viruses [9]. This was particularly true since earlier 
phylogenetic analysis based on partial sequence had failed to comprehend the complex his-
torical recombination events that are potentially responsible for pandemic emergence. NGS 
along with partitioning and barcoding has enabled the efficient sequencing of complete viral 
genomes leading to better understanding of the transmission and emergence of clinically im-
portant viruses [8].

	 The opportunity to sequence and compare multiple whole genomes has highlighted the 
crucial genetic differences between different viral isolates [9]. The current knowledge about 
sequencing has enabled researchers to analyze drug resistance in DNA and RNA viruses (Cy-
tomegalovirus and Haemophilus influenza virus). High coverage sequencing (also termed as 
deep sequencing) helped to identify lesser drug resistant variants. However, whole genome 
sequencing of viruses can help us in understanding of better and potential drug resistant vari-
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ants. Other than research purposes, sequencing analysis is equally important in clinical studies. 
For instance, highly active antiretroviral therapy in case of HIV has significantly improved 
the survival rate of HIV patients [10]. Apart from this, metagenomics analysis is also exten-
sively used as a diagnostic tool. Herpes simplex virus was identified in the cerebrospinal fluid 
(CSF) of patients who were suspected to have viral meningoencephalitis. Pan viral screening 
is believed to aid in diagnostics of Central nervous system infections [11]. However, there is a 
need to develop a more rapid sequencing technology to share real time sequence information 
to guide healthcare sector for the control of outbreaks [8]. 

	 The rapid growth of viral genome sequences and their Bioinformatics analysis has 
brought about a revolution in viral genomics. The development has challenged the conventional 
classification and nomenclature of these organisms [12]. Genomics and Bioinformatics-based 
software and tools need to be developed to utilize the genome attributes such as phylogenom-
ics and unique features in the strain’s biology and also about the viral families. Therefore, the 
information derived from primary sequence data can be useful compared to the previous use 
of immunochemical methods that probed limited and often murky epitopes that are actually an 
indirect interpretation of the primary sequence data in the form of a tertiary sequence.

	 Viral sequencing data is being used in Forensic studies. Sexually transmitted viruses 
such as HIV (Human Immunodeficiency virus)were used to generate phylogenetic profiles of 
disease and link victim and assailant [13]. Some viruses such as HCV (Hepatitis C virus) [14], 
EBV (Epstein Bar virus) [15], and BKV (BK virus) [16] can prove to be significant in deter-
mining place of birth and locality of suspicious individuals.

	 Advances in Bioinformatics has enabled scientists to acquire a better understanding of 
the biology of pathogenic viruses. For example, viruses belonging to the Poxviridae family 
infect a variety of hosts and cause small pox disease in humans. Moreover, their natural occur-
rence and potential bioterrorism concerns has aroused an interest in the scientific community 
[12]. Ebola virus is also suspected to be a bioweapon [17]. A collection of genomes through 
recent advancements in genome sequencing has permitted the understanding of core genes (or-
thologous genes) that are present in all the members of the Poxviridae family. Faced with the 
challenges of analyzing simple and smaller genomes of viruses, a poxvirus-specific computa-
tional tool was developed by Hendrickson et al. to predict accurate gene sets [18]. This com-
parative approach highlighted the concept of reductive evolution in which loss of particular 
genes is thought to play an essential role in the speciation and restriction of emergent viruses 
to operate in particular environments. Eaton et al., explored the idea of core genes in the Iri-
doviridae family [19]. They concluded that genomes contain groups of repetitive sequences.A 
similar study was conducted in Nucleo-Cytoplasmic Large DNA Viruses (NCLDV) and or-
thologous genes were determined in 6 families using Comparative phylogenetics [20]. Thus, 
in the postgenomic era, numerous Bioinformatics tools have been developed for comparative 
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genome analyses which of course was dependent on the availability of genome sequences.

	 In pregenomic era Edward Jenner used a cow pox virus to induce immunity against 
smallpox viruses in the human, but understanding of mechanism of vaccines was limited at 
the time [21]. On the basis of further innovation and advancements in the field of Vaccinol-
ogy, vaccines were categorized into first generation vaccines (having inactivated/killed lysate 
of pathogens), second generation vaccines (pure antigenic determinants of pathogen)and third 
generation vaccines or modern Vaccinology (that use genomics, transcriptomics and genome 
analysis to construct vaccine candidates) [22]. The approaches used in classical Vaccinology 
(1st generation and 2nd generation vaccines) were unable to fully overcome infections due to 
the diversity and complexity of microbial genomes. Poorly activated pathogen lysates may 
cause adverse effects, so there was a need to introduce novel strategy to develop universally 
applicable and safe vaccines. 

3. Reverse Vaccinology

	 With the accessibility of complete genomic data of pathogenic microorganisms, an in-
novative approach known as “reverse vaccinology” has been designed for vaccine develop-
ment. Computer-aided analyses can be conducted utilizing the genome sequence of a particular 
pathogen to predict the antigenic components for the development of a potential vaccine [23]. 
The advantages are multi-fold. There exists no requirement to grow and cultivate the microor-
ganism. The entire procedure is done using computers without the requirement of laboratory 
apparatus such as pipettes, fermenters and so on. Pathogens requiring strict handling can be 
studied without any safety concerns. The framework takes into consideration all the proteins 
that are expressed (invivo or invitro) by a pathogen at a given time. Antigens used in con-
ventional wet laboratory experiments are identified; moreover, novel antigens are discovered 
based on a completely different framework. In case of viruses, the mutation rate is higher so 
reverse vaccinology approach can provide data regarding putative antigenic vaccines that are 
conserved across all the strains in viral species. In case of Dengue virus 9000 viral sequenc-
es were analyzed to determine potential vaccine constructs that can elicit immunity against 
nearly all the strains of dengue virus [24]. Similar studies are conducted in Zika virus [25,26], 
human papilloma virus [27], Congo virus etc. [28,29]. More than 9500 reference sequences of 
viral genomes are available on NCBI. The reverse vaccinology approach provides new and yet 
unexplored insights into the mechanisms of immune intervention. 

	 This top down strategy of the post genomic era has reduced the time and cost required 
for making vaccines. However, testing these vaccines in rodents and then in mammals is re-
quired before clinical trials. In contrast to classical vaccinology era the labor-intensive efforts 
are reduced [30,31]. Now whole genomes can be analyzed and only antigenic immunogenic, 
non-homologous to human and surface exposed vaccine constructs can be designed that can 
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elicit immune response in human body without any risk of allergy or autoimmunity [32]. The 
approach is illustrated in Figure 2.

 

Multi-epitope vaccine 

Figure 2: Reverse vaccinology. Genome and Proteome analysis can be used to predict epitopes. These epitopes are then 
characterized based on their antigenicity and immunogenicity [28]. Individual epitopes can be linked to make a multi-
epitope vaccine [33].

The tools used in viral reversevaccinology and other in silico analysis are mentioned here-
with:

Tool name Use Links

NetMHC(34,35)
CTLPred(36)

nHLAPred(37)
Propred 1(38)
Propred(39)

RankPrep(40–42)

Prediction of MHC binding epitopes http://www.cbs.dtu.dk/services/NetMHC/
http://crdd.osdd.net/raghava/ctlpred/

http://crdd.osdd.net/raghava/nhlapred/
http://crdd.osdd.net/raghava/propred1/

http://osddlinux.osdd.net/raghava/propred/
http://imed.med.ucm.es/Tools/rankpep

AVPpred(43) Antiviral peptide prediction algorithm http://crdd.osdd.net/servers/avppred/

HBVdb(44)
GATU(45)

Annotation of viral genomes http://hbvdb.ibcp.fr
https://virology.uvic.ca/virology-ca-tools/gatu/

VaxiJen(46)
ANTIGENpro (47)

Antigen prediction http://www.jenner.ac.uk/VaxiJen

Allergen FP(48)
ALGPred(49)

Allergenicity prediction http://ddg-pharmfac.net/Allergen FP
http://www.imtech.res.in/raghava/algpred/

SOLpro (50) Solubility upon overexpression in 
E.coli

scratch.proteomics.ics.uci.edu/

siVirus(51) Antiviral siRNA design software http://sivirus.rnai.jp/

ViReMa(52) Algorithm for detection of recombina-
tion junctions in viral

Genomes

https://omictools.com/viral-recombination-map-
per-tool
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	 However, due to lack of adequate knowledge on aspects of immunological aspects of 
vaccine, good correlates of protective immunity are uncommon and is the major limitation of 
reverse vaccinology. Moreover, the approach is entirely protein-specific; other non-protein 
antigens such as polysaccharides and glycolipids are not covered in this method. Another 
drawback of reverse vaccinology is the genetic instability of some viruses. To circumvent 
this limitation, structure based reverse vaccinology and synthetic genomics can be applied 
for rational vaccine design. Structural vaccinology integrates data from structural biology, 
human immunology and bioinformatics to predict immunogenic and antigenic residues [53]. 
Crystal structure of Respiratory Synctial virus conjugated with fusion glycoprotein showed 
high neutralizing antibody titres using Structural vaccinology approaches [54]. However, in 
case of synthetic genomics, genomes can be artificially synthesized using genetic material. 
One of the recent examples of synthetic genomics was vaccine against avian influenza virus 
[55]. These vaccines can be manufactured rapidly and mimic natural viruses in their mode of 
action. Synthesized genomes and engineered antigens have improved the efficacy of vaccines, 
but understanding the pathogenesis of viruses is still of primary interest. 

	 Some viruses have genome integration capabilities hence that they are actively used as 
viral vectors in gene therapy. These viral vectors are safe and effective [56]. Nevertheless, viral 
integration at certain sites may cause malignant transformation and altered gene expression. 
With the help of bioinformatics, a pipeline was recently designed to determine integration sites 
in NGS based viral vectors that could be used in gene therapy data. The tool is efficient and 
performs analysis by Agilent Sure Select through rapidly evolving targeted sequencing and 
PCR based linear amplification strategies. It is available at https://github.com/G100DKFZ/
gene-is [57]. Some other tools that also determine viral integration sites are ViralFusionSeq 
[58] and Virus-Clip [59]. At the time of writing, GENE-IS is the first tool that gives informa-
tion based on two sequencing strategies and has no specific constraints regarding input data.

4. The Human Genome Project and its Impact on Biotechnology

	 Work on the ENCODE (Encyclopedia of DNA Elements) project was made possible af-
ter the completion of the Human Genome Project [60]. The scientists working in the ENCODE 
project channelized their efforts to develop an understanding of the functional components of 
the human genome [61]. These efforts proved fruitful as they resulted in a huge amount of data 
regarding the regulatory networks that control the expression of human genes [62]. Computer 
aided pathway analysis has been used to locate protein and enzymes in their pathways and 
bioreactors, respectively. In 2005, computational analysis led to allocation of 622 enzymes in 
biological pathways and 2709 enzymes to bioreactors [63]. Nevertheless, more research is re-
quired to decipher the functions of low annotated human genes and large non-coding genomic 
regions that are transcribed [60].
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	 The HGP has directly influenced advancements in the field of proteomics. Proteins 
as structural components, molecular machines, or signaling devices dictate the cell-specific 
functionality of the transcribed genome. The HGP has greatly aided the utilization of mass 
spectrometry, a crucial proteomics tool, by giving reference sequences and ultimately the pre-
dictions regarding the masses of all the tryptic peptides in the human proteome [64]. This is 
required for the mass-spectrometry based proteomics analysis. The Mass spectrometry (MS) 
has in turn been the driving force of novel applications like targeted proteomics [65]. Several 
servers like mascot [66], sequest [67], SQID [68] are used for the analysis of data obtained 
from MS. This data can also be used to identify Post translational modifications(PTMs) in 
proteins/peptide that may help in the understanding of the role in biological pathways; SIMS 
server is also available to identify PTMs in MS data [69].

	 The HGP has also contributed significantly to our understanding of evolution. The suc-
cessful completion of this project jump-started the whole genome sequencing of other eukary-
otic organisms and bacterial species [70]. The resulting collection of whole genome sequenc-
ing data from a variety of living organisms ranging from microbes to human has led to the 
genealogical tree of life that strongly supports the notion that all species that exist nowadays 
arise from a common ancestor (14,71). Especially, genome analysis of Neanderthal is likely to 
provide more insightful results into the evolutionary aspects of human beings especially [72].

	 The accessibility of all the diseases genes in human, along with genes from the human 
pathogens that are the causative agents of infectious diseases, will have a direct influence on 
drug development efforts. The human genome contains nearly 30,000 genes and it is expected 
that most, if not all of them, would be targets of therapeutic interventions. Functional and 
structural analyses of these genes and their encoded proteins respectively is likely to increase 
the number of drugs being developed in the coming years. Pharmaceutical sector is actively 
engaged to exploit the yet unexplored potential of recent advancements in genomics [73]. Due 
to complexity of biological system, system based drug discovery is also an effective approach 
to design drugs [74]. 

	 The variation in the human population can be analyzed by the power of genomics which 
will contribute to the science of medicine. DNA sequences are already in use for diagnostic 
purposes to identify the association of unique sequence variants or Single Nucleotide Poly-
morphisms (SNPs) with a particular disease. Distinct from point mutations, SNPs are sequence 
variants that are frequently found in the human population. These genetic variants do not in 
itself cause disease; rather they contribute to disease susceptibility in an additive manner. 
More than 10 million SNPs in human population were identified till 2011. This data was used 
to study the impact of SNPs on pharmacogenomics [75]. Moreover, these SNPs are also linked 
with complicated responses such as personalized responses to drug therapy. Hence, it may be 
possible to elucidate the variants that makes humans more prone to develop diseases such as 
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diabetes and asthma. Moreover, SNPs can be identified that influence individual response to 
drugs, thus ultimately increasing the likelihood of developing personalized therapies to target 
the unique genetic make-up of particular patients. SNPs are present in elite controllers of HIV 
and restrict the binding of virus with co-receptor CCR5 to block viral entry. The survival rate 
in elite controllers is comparatively higher than progressors [76]. However, the associated so-
cial, ethical, legal and moral issues need to be recognized and addressed to protect privacy and 
to prevent discrimination. 

5. Post Genomics era in Plant Biotechnology

	 One of the many factors that limit crop production is salinity. Plants respond to saline 
stress in a complex way and the response is mediated by many genes which are the compo-
nents of different signaling pathways in which cross-talk has also been reported [77]. Hence, 
it is difficult to fully understand how plants respond to salinity. Advancements in the field of 
genomics has provided the much-needed knowledge for crop improvement. Genes responsive 
against salinity induced stress have been identified and characterized, signaling pathways have 
been mapped, thus ultimately providing the basis for enhancing the salinity stress response 
of existing plants [78]. The information is crucial in the development of stress tolerant crops 
through tools like gene pyramiding that has been applied in marker assisted breeding and ge-
netic engineering [79]. The advent of Genome editing by CRISPR/Cas9, TALENs, etc. has 
enabled plant biologists to produce desired genetically engineered crops with improved pro-
ductivity, yield, etc. Recent progress in genomics has led to increased understanding of plant 
responses against environmental stresses such as salinity stress and drought conditions [78]. 
This has in turn increased prospects for generating stress tolerant plant varieties such as wheat, 
rice etc. 

	 The genome of potato had been sequenced firstly using homozygous DM1-3 518 R44 
or DM and later on with a heterozygous diploid line RH89-039-16 or RH [80-82]. The avail-
ability of the whole genome sequence as well as associated annotation of almost 39000 potato 
genes has enabled the identification of candidate genes in those regions that are concerned 
with specific traits [83]. Genome sequence assisted in the identification of StCDF1 gene that 
is responsible for plant maturity as well as StSP6A gene that is required for tuber initiation in 
potato [84,85]. The study of genome also generated a collection of candidate resistance genes, 
thus significantly improving our ability for robust discovery along with the prospects of intro-
gressive hybridization of R-genes in potato [86,87]. The integrated approach of biotechnol-
ogy and genomics is a positive step to solve global food security concern. Oleic acid cultivars 
were genetically modified to enhance vegetable oil production. More than 40% increase in 
consumption of this oil is expected to be achieved by 2020 in the US population [88].

6. Artificial Chromosomes 
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	 To incorporate larger segment of DNA, Yeast artificial chromosome (YAC) was intro-
duced. The system proved helpful in studying genes with the normal promoter [89–94]. The 
advancement in scientific knowledge and Human genome project has led to the synthesis of 
BAC (Bacterial Artificial Chromosome) that are used for functional analysis of proteins [95]. 
MAC (Mammalian Artificial Chromosome) was constructed a year after generation of YAC. 
In 1997, Human artificial chromosome was introduced [96], refined in 2010, and was later 
used in inserting HSV(Herpes simplex virus) into cancer cells making them susceptible to 
ganciclovir antiviral drug. The virus infected cells were cleaved afterwards [97]. Post genomic 
era has provided us numerous opportunities to deeply understand antiviral mechanisms, ex-
pression profiling, and pathway construction using NGS and single cell sequencing. 

7. Conclusion

	 Genome sequencing and associated huge amount of data has transformed the World of 
Biotechnology. Nowadays, sequencing cost has reduced considerably enabling robust whole 
genome sequencing of living organisms. This recent progress has triggered the development of 
different Bioinformatics tools and software to analyze the huge biological data. This has aided 
in the better characterization of different viruses and facilitated vaccine development using 
sequencing data in reverse vaccinology. Moreover, these analytical tools have facilitated drug 
development and gene therapy using viruses. The Human Genome Project has greatly facili-
tated the understanding of the human genome; variations in the human genome associated with 
particular disease were able to be identified and a better understanding of the human evolution 
has been achieved by comparative genomes and phylogenomics. The ENCODE project, in 
itself dependent on human genome, aims to elucidate the functions/s of the non-coding re-
gions in the human genome. Advancements in genomics has led to the identification and char-
acterization of genes contributing to tolerance against salinity stress and drought conditions 
in plants thus providing an opportunity to generate genetically modified crop varieties with 
improved resistance against these abiotic stress factors. Biotechnology along with genomics 
can also be used to solve global food crisis. Finally, Yeast Artificial Chromosome and Bacteria 
Artificial Chromosome can be used to incorporate large DNA fragments. Hence, further ad-
vancements in genomics will no doubt have a significant impact in shaping the Biotechnology 
of tomorrow. 
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