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Abstract
	 Viruses are the most potent parasitic entities that are detrimental to all animal 
and plant groups with no exceptions known so far. The viral genome though small 
is sufficient for sustaining the infection and its propagation inside the host organ-
ism. The sessile inhabitants of the plant kingdom have developed their strategies 
to counter this threat too with variable degree of success. The most important and 
significant of these strategies involves the RNA silencing mechanism. The viruses 
have evolved successfully in parasitizing and evading this plant defense strategy, 
by their ability to encode various “suppressor” molecules, which are able to target 
different components of the silencing pathway in plants. Besides suppression ac-
tivity, these proteins also perform functions essential for virus multiplication and 
pathogenicity. In this chapter we briefly discuss about the plant defense strategies 
with the help of RNAi mediated processes with special focus on Virus Induced 
Gene Silencing (VIGS) and the viral suppressors as countermeasures to combat this 
strategy, while describing the probable mechanisms of suppressor action and the 
variations that exist in their mode of action. We have also tried to elucidate certain 
assays that are commonly used to detect and quantify the activity and strength of 
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1. Introduction

	 Viruses are recognized as the primary cause of nearly half of the infectious diseases in 
plants. Transmitted by insects such as leafhoppers, treehoppers, whiteflies etc the viruses are 
capable of infecting almost all types of plants. Infected plants may show a range of symptoms 
depending on the disease but often there is yellowing of leaf (streaking, vein clearing or mo-
saic), curling of leaf and other growth distortions like plant stunting, abnormalities in flower 
or fruit formation etc. The infecting viruses can damage up to 70% to 100% of yield [1] and 
rough predictions indicate that the total worldwide damage due to plant viruses may be to 
the tune of US$ 60 billion per year. The accumulation of vast amount of data from across the 
globe has revealed the devastating potential of the different viruses and have established their 
identity as notorious plant pathogens. 

	 Plants have developed strategies to counter this threat with variable degree of success. 
The strategy based on the RNA silencing pathway being the most important and significant. 
It is a method of sequence-dependent gene regulation involving suppression of transcription, 
transcript degradation or translation inhibition [2,3]. The phenomena of RNA silencing was 
first observed during loss in petunia flower pigmentation while over expressing the chalcone 
synthetase (chs) gene [4]. An important observation on RNA silencing was made during ex-
periments with pathogen-derived resistance when it was shown that virus resistance correlated 
with reduction of viral mRNA in the cytoplasm. Later three independent reports demonstrated 
that untranslatable viral RNA was sufficient to produce virus resistant plants and the expres-
sion of viral proteins was not required [5-7].

	 These findings launched the search for the “resistance factors” and in the year 1999, it 
was explicitly proved that plants accumulated small double stranded RNA (dsRNA) molecules 
whose sequence was identical to the silenced transgene [8]. Similarly sequence-specific small 
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these suppressor proteins. Then, we describe the specific applications of the RNAi 
based strategies used to counter virus attack.



RNAs were observed in Potato Virus X (PVX) infected plants, suggesting a role of these mol-
ecules in antiviral defense mechanism. This triggered the discovery of the components and 
pathways of the silencing machinery [8]. Since then, it has evolved as a gene silencing tool 
with great potential for virus resistance. The silencing mechanism is involved in adaptive de-
fense response, gene regulation and chromatin maintenance [9-11]. Though the virus can act 
as both inducers and targets of gene silencing, they have evolved successfully in parasitizing 
and evading plant defence strategies, by their ability to encode various “suppressor” molecules 
which are able to repress different components of the silencing pathways. An understanding of 
both components is necessary for developing effective antiviral strategies for enhancing plant 
resistance.

2. RNA silencing in plant antiviral defense

	 RNA silencing or RNA interference is the natural strategy of switching off gene expres-
sion during fundamental processes like development, genome maintenance and defence against 
foreign molecules e.g. viruses. With the rapid advancement in science, a lot of information has 
emerged regarding the mechanisms and machineries of RNA silencing [12]. This is being ex-
ploited as a new tool for developing antiviral products, which have large applications in field 
of medicine, agriculture and basic biology [13]. In the medical sector, several studies have 
demonstrated efficient in-vivo delivery of siRNAs and therapeutic benefit in mice or bovine 
models. Presently several companies are engaged in developing RNA silencing based drugs 
for clinical use [14]. In the agricultural sector studies have been performed on a number of 
plants to improve nutritional content, increase yields and remove undesirable metabolites [15]. 
The emphasis is on deciphering gene functions and identifying pathways that can be directed 
to protect plants from environmental perturbations and pathogen attack. The potential of RNAi 
has been recently demonstrated in developing effective resistance against many coleopteran 
and lepidopteran insect-pests of crops [16] and in managing plant-parasitic nematodes [17].

	 The RNAi mechanism exhibits an array of diversity in different components for its 
mode of action but the basic mechanism involves the cleavage of a stem-loop like or a perfect 
dsRNA structure into small RNA molecules of about 21-24 nt length. This inducer dsRNA 
can be endogenous like annealed overlapping transcript of opposite polarity, triggered by tran-
scription of tandem or inverted repeat sequences or else exogenous, like RNA virus replica-
tion intermediates [18-23]. The dsRNAs are diced into RNA duplex of 20-24 nts with the 
characteristic 2 nt 3’ overhangs by DICER, which is a key component of the microprocessor 
complex [8,19,24,25]. The small RNAs associate with a set of proteins to form RNA Induced 
Silencing Complex (RISC), which directs the silencing pathway. The small RNAs include the 
miRNAs (microRNAs) and the siRNAs (small interfering RNAs) with their various sub-types, 
viz., ta-siRNA (trans acting siRNAs), ra-siRNA (repeat associated siRNAs), vi-siRNA (viral 
siRNAs), nat-siRNA (natural antisense siRNAs) etc. Several excellent reviews are available 
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detailing the nature, classification, biogenesis and function of these small RNAs [3,26-29].

	 The key protein molecules involved in the process of small RNA biogenesis and function 
are DICER (DCL), RNA DEPENDENT RNA POLYMERASE (RdRP) and ARGONAUTE 
(AGO). The silencing mainly occurs at two different stages in cells and hence is categorized 
accordingly. The cytoplasmic RNA silencing also known as Post-Transcriptional Gene Silenc-
ing (PTGS), targets mRNA for degradation or translation repression with the help of 21-22 nt 
species of RNA molecules generated from inducing dsRNA [2]. This involves various small 
RNA classes (miRNA, siRNA, trans-acting siRNA) and DCLs. Subsequently the diced small 
RNAs are loaded into the RISC effector complex to guide specific localized silencing [18-
22,30]. In several cases, the primary siRNAs prime the RdRP6 mediated synthesis of second-
ary dsRNA for generation of secondary siRNA or transitive siRNAs. This results in the ampli-
fication of siRNAs and the spread of silencing beyond the site of its initiation to bring about 
systemic silencing [2].

	 The other silencing pathway operates at the nuclear level and is called Transcriptional 
Gene Silencing (TGS). This pathway is directed by the 24 nt siRNAs and miRNAs and it 
involves heterochromatin silencing by cytosine methyation of DNA and post-transcriptional 
modifications of histone proteins (e.g. H3- methylation at lysine – 9). The siRNA involved in 
this case are generated by DCL-3 with the help of AGO-4 and RdRP-2 [2,3]. This pathway is 
considered significant in preventing rearrangement in centromeric and telomeric repeats by 
suppressing transposons and other invasive DNAs and thus maintaining genetic integrity [2, 
3].

2.1 Virus induced gene silencing 

	 The observations that viruses act as inducer as well as target of RNAi machinery lead 
to the theory that the silencing mechanism is primarily a defense system in plants [31,32]. The 
invading viral RNAs can precondition this response, even though the natural response is adap-
tive and requires recognition of ‘foreign’ nucleotides for initiation [33-35]. The small RNAs 
triggered in response to one mild virus also serve as “molecular memory” to cross-protect the 
infected plant against virulent infection by another related virus carrying sequences homolo-
gous to the first virus [33]. This cross protection phenomenon was reported by the plant virolo-
gists as early as 1920, though the mechanisms were worked out much later.

	 In fact, the term Virus Induced Gene Silencing (VIGS) was first used to describe the 
phenomenon of recovery from virus infection [36]. Soon after virologists observed that over 
expression of certain genes using viral vectors led to the degradation of the desired mRNA 
resulting in genotypes resembling a nearly knockout mutation of the corresponding gene. This 
was explained to be due to RNA silencing and subsequently the phenomenon of VIGS was ex-
clusively used to describe the ability of recombinant viruses to knock down expression of en-
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dogenous genes [37,38]. It was speculated that majority of plant viruses replicate via a dsRNA 
intermediate which may serve as the principal inducer of the siRNA/RNase system resulting 
in VIGS. The secondary structure or convergent transcription of viral RNAs can also serve as 
a potent trigger of RNA silencing and the reaction is further amplified by host encoded RdRPs 
[39,40]. Thus RNA silencing stands as a very important as well as efficient tool for plants to 
maintain their defence strategy, especially against viruses. 

	 VIGS as a tool is gaining immense popularity in the field of functional genomics as it 
is a simple method when compared to agroinfiltration or biolistic gene guns. The method does 
not involve stable transformation and the results can be obtained rapidly within a period of 2-3 
days only. Furthermore, it is easy to use and provides a high throughput characterization of 
phenotypes that might be lethal in stable lines. It also has the advantage of being very specific 
to the target and has been successfully used for rapid silencing of one or more genes in a large 
number of species. However, it may have limitations on availability of infectious clones, its 
host range, regions of silencing and size restrictions on the inserts. Furthermore, the virus in 
the VIGS vector needs to be disarmed to avoid any symptom development due to infection 
[41].

	 VIGS is being used as a tool that employs the RNA mediated antiviral defence mecha-
nism to produce gene knockouts. A number of VIGS vectors have also been constructed by 
cloning the gene to be silenced in a minimal portion of the viral DNA (or cDNA in case of RNA 
virus) that could efficiently replicate and cause infection [38]. This vector is then introduced 
mechanically into the system and whenever a dsRNA structure or a secondary RNA structure 
is formed during the course of infection, silencing process is efficiently initiated against the 
infecting virus. In the process the host silencing response also silences the target-gene(s) at 
the post-transcriptional levels, in a sequence-specific manner [42]. The first VIGS vector was 
developed using Tobacco Mosaic Virus (TMV) which has an RNA genome. Transcripts of 
recombinant TMV carrying a sequence encoding phytoene desaturase (pds) were produced 
in vitro and inoculated to Nicotiana benthamiana plants leading to successful silencing of 
pds. The leaves of these plants exhibited characteristic white patches due to photo-bleaching 
as PDS enzyme is envolved in biosynthesis of carotenoids that protect the chlorophyll from 
photo-bleaching [43].	

	 Tobacco Rattle Virus(TRV) based VIGS vectors are the most widely used. These are 
usually cloned between the T-DNA borders and introduced in plantsby agroinfiltration (44-
48). TRV-based VIGS vectors have been used to silence genes in a number of Solanaceous 
plant species [47,49,50]. PVXbased VIGS vector have also been used, however they have 
more limited host range as only three families of plants are susceptible to this virus(46). The 
geminiviruses like bipartite Cabbage Leaf Curl Geminivirus (CaLCV), Mungbean Yellow Mo-
saic India Virus (MYMIV), Tomato Golden Mosaic Virus (TGMV), etc have emerged as very 
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promising DNA virus based VIGS vectors, as they can be delivered by direct plasmid DNA 
infection. The Tomato Leaf Curl Virus circular replicon based VIGS vector was shown to si-
lence the pds andpcnagenes of tomato in a long-lasting manner [51]. A list of commonlyused 
VIGS vectors is provided in Table 1.

	 The Satellite-virus-induced silencing system, SVISS, was also demonstrated as an ef-
ficient gene silencing in plants.It employs the dual-component of a Satellite-virus-based vec-
torand ahelper virus. The first SVISS was based on a Satellite virus which uses the TMV strain 
U2 as a helper [53]. In other studies,modified satellite DNA were used for silencing genes 
alongwith Tomato Yellow Leaf Curl China Virusin N. Benthamiana [65], African Cassava Mo-
saic Virusin cassava [67], Pea Early Browning Virus in pea [56] and Bean Pod Mottle Virus 
in soybean [58]. This method has the advantage ofbeingeasily clonable (small genome size), 
highly stable and showing attenuated symptoms of virus infection. 	

3. Suppressor of RNAi

	 Viruses have evolveda defense measure for evading the RNA silencing mechanisms. 
They encode for protein molecules known as ‘suppressors’ [68,69] which interfere at different 
stages of RNA silencing pathway thus helping in efficient infection and replication of virus in 
the host cell and spreading the infection systemically. These suppressors molecules are usually 
ordinary viral proteins e.g., coat protein, movement proteinor proteases that carry the suppres-
sor activity as their secondary function. It has been suggested that the suppressor activity is ca-
sually coupled with transcription factor activity [70]. As a result there is extensive assortment 
in the RNA Silencing Suppressors (RSS) documented from the distinct viruses. A number of 
suppressors discovered so far in various systems have been listed in Table 2. 

3.1. History of RNA silencing suppression

	 The vital role played by specific virus encoded proteins in augmenting virulence pro-
vided the first indication on the presence of RSS. In the classical study it was shown thatPVX 
by itself, causes mild symptoms but the symptoms show a vigorous enhancement during co-
infection with the Potato Virus Y (PVY) and Tobacco Etch Virus (TEV) [31]. Subsequently 
several other reports showed that co-infection with combination of viruses caused increased 
symptom severity compared to each of the viruses alone.This phenomenon was denoted as 
synergism [71] and it is now understood that the enhanced synergism ismainly due to weaken-
ing of the host defense by RSS targeting the silencing pathway at multiple points [31,72].

		  In 1998 several independent reports showed the involvement of a potyvirus en-
coded helper component proteinase (Hc-Pro) in enhancement of replication of many unrelated 
viruses. In one such report it was shown that Hc-Pro suppressed the PTGS of β-glucoronidase 
(GUS) reporter transcript on a highly expressed locus [92]. In another study, GUS silenced 
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Nicotiana tabacumplants were crossed with four independent transgenic plants expressing 
TEV-P1/HC-Pro and it was observed that silencing was reversed in the resulting offsprings 
[87]. These observations led to identification of P1/Hc-Pro as the first RSS.

	 In the same year, Brigneti and co-workers showed that PTGS of a green fluorescent 
protein (GFP) in Nicotiana benthamiana plants transgene is suppressed after infection with 
Cucumber Mosaic Virus (CMV). In an interesting experiment they expressed HC-Pro of PVY 
and 2b protein of CMV-encoded proteins in a PVX vector and demonstrated that both can 
act asRSS. They also demonstrated that HC-Pro acts by blocking the maintenance of PTGS 
in tissues containing established silencing, whereas the 2b protein prevents initiation of gene 
silencing in the newly emerging tissues [81]. Since then several RSS from plant, insect (like 
B2 protein of Flock House Virus) and animal (like NS1 encoded by Influenza Virus) viruses 
have been identified [87,93,94]. It was also shown that the RSS can suppress silencing in both 
animal and plant cells, regardless of their host preference due to the conserved nature of the 
silencing phenomenon [95].These findings triggered the search for more RSS and since then, 
a number of viral encoded RSS have been discovered (Table 2). It emerges that the viruses 
employ RSS as a common strategy against one of the most potent induced defense system. 

3.2. Identification of RNA silencing suppressors

	 The analysis of candidate viral proteins as potential RSS was enabled by the develop-
ment of different screening systems, based on monitoring their role in reversing the RNA 
mediated silencing of reporter genes like GFP or GUS. The assays utilized different reporter 
constructs, such as partial or complete inverted repeats and this also provided an indication on 
the possible site of action of the RSS [96]. The most commonly used in planta assay is based 
on transgenic tobacco plants constitutively silenced for a reporter gene [97]. The RSS activ-
ity can beassayed by rummaging for localized reporter gene expression following transient 
expression of the virus encoded protein [98,99]. As a modification of this method the reporter 
gene and the putative RSS are co-infiltrated in wild type tobacco leaves followed by monitor-
ing the reporter gene expression [86,100,101]. It is anticipated that in presence of RSS activity, 
the reporter gene expression will be retained to a high level or may even increase. 

	 An alternative method involves generating two types of stable transgenics, one contain-
ing a silenced reporter gene and the other expressing the candidate viral RSS [87,92,102-104]. 
The two plants are crossed and the progeny is screened for reporter gene expression. However, 
this method is labour intensive and often over-expression of RSS in the plants affects seed 
formation and leads to developmental defects. Alternatively, the candidate RSS can be ectopi-
cally expressed from a heterologous viral vector, which is inoculated on to the silenced trans-
genic plants. PVX based vectors lack the ability to restore the reporter gene expression in such 
assays and thus serve as suitable vectors to test the viral genes for their RSS capability [81].
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	 The affect of RSS on systemic movement of the silencing molecules can be assayed by 
grafting of a reporter gene silenced rootstock to a reporter gene expressing scion. The silenc-
ing signal systemically spreads from rootstock to scion to silence it reporter gene expression. 
The candidate RSS is introduced in the plant serving as the rootstock with the help of genetic 
crossing. In presence of RSS activity the spread of the silencing signal will be curtailed and 
there will be no effect on the reporter gene expression in the scion. This assay is not only time 
consuming but requires the production of transgenics as well as breeding experiments

3.3. Mechanism of RNA silencing suppression 

	 The RSS encoded by different plant viruses appear to suppress the silencing based virus 
defense pathway in different points [68,86,100,105-107]. They primarily act on the common 
biogenesis or functional components of the pathway causing suppression of the siRNA-medi-
ated [108-113] pathways, resulting in breakdown of the host anti-viral defense response [96]. 
The common sites of action include:

3.3.1. Binding double stranded RNA

	 In the silencing pathway the long dsRNA actsas a major inducer and small dsRNA 
serves as a major effector molecule. The binding of RSS masks the long dsRNA and thus 
protects it from the DCL action, thereby preventing its processing into siRNA [114]. The bind-
ing to small dsRNA like siRNA duplex prevents their sorting into the AGO containing RISC 
complex and renders them functionally inactive. Binding to small RNA duplex is a common 
strategy for many of the viral encoded RSS [114] encoded by phylogenetically and evolution-
arily divergent viruses like tombusvirus P19, closterovirus P21, carmovirus CP, pecluvirus 
p15, hordeivirus QB, potyvirus HC-Pro, CMV-2b [115-120].	

	 The RSS also interfere with miRNA biosynthesis in plants and inhibit the cleavage and 
translational repression of target genes by specific miRNA in the plant developmental pathway 
[101,102-104,121-124]. In plants, virus-induced disease symptoms often result in develop-
mental abnormalities resembling perturbation of miRNA-mediated function. Several studies 
have now shown that transgenic expression of RSS can alter the accumulation and/or function-
ing of miRNAs leading to developmental abnormalities related to the action of miRNAs [125]. 
Tombus virus encoded P19, Beet Yellow Virus encoded P21 and Potyvirus P1/HC-Probind to 
duplex forms of miRNAs [103]. 

	 The crystal structure of RSS further indicates that themechanism of RNA binding also 
varies [126]. TAV2b recognizes siRNA (19nt) duplex by a pair of hook-like structures and 
adopts a R-helix homodimer structure to measure siRNA duplex in a length-preference mode, 
whereas P19 protein uses an extended S-sheet surface and asmall R-helix to form a caliper-like 
architecture for binding and measuring thecharacteristic length of siRNAs.Few RSS proteins 
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have the ability to bind both long and short dsRNA, like p14, FHV-B2 [120]. AC4 protein of 
ACMV is a unique RSS because of its ability to bind to single-stranded forms of miRNAs and 
siRNAs and thus interferes with both miRNA-mediated function and suppression of siRNA-
mediated PTGS.	

3.3.2. Binding to biogenesis components

	 Many RSS have been found to interact with and inhibit the activities of DICER/DCL 
and this directly affects the small RNA biogenesis. P38of Turnip Crinkle Virus suppresses 
DCL4 activities [127]. The P6 protein of CMV suppresses the host DRB4 activity which is 
required to facilitate the activity of DCL4 enzyme (128). Among the non-plant virus FHV-B2 
interacts with the PAZ domain of DICER (120)and the Hepatitis C virus core proteinalso di-
rectly interacts with DICER to antagonize RNA silencing [126].

	 RDR6 is another important component mainly associated with sense gene mediated si-
lencing and transitive siRNA biogenesis by generating dsRNA. MYMIV-AC2 has been found 
to be interacting with RDR6 to interfere with RNA silencing [129]. Potyvirus P1/HC-Pro also 
interferes with the HEN-1 mediated methylation of miRNA [103]. 

3.3.3. Interference with RISC

	 Suppression activity at RISC level is achieved by targeting the AGO protein. Polerovi-
rus encoded P0 and CMV-2b suppresses RNA silencing by destabilizing the AGO1 [130,131]. 
Similar silencing mechanism has also been observed in case of MYMIV-AC2 [129]. P1/HC-
Pro also inhibits miRNA-mediated cleavage of target mRNAs, but the exact mode of action of 
this protein in the silencing pathway is not known.

3.3.4. Interference with DNA methylation

	 Some RSS have the ability to reverse the small RNA mediated TGS. They can cause re-
versal of TGS by various mechanisms. It has been reported that the 2b protein of severe Shan-
Dong (SD) isolate of Cucumber mosaic virus, suppresses RdDM by binding and sequestering 
siRNAs in a process involving AGO proteins in the nucleolus [132]. Another mechanism is 
displayed by the AC2 protein of Begomovirus and Curtovirus genera. They inactivate Ad-
enosine Kinase, thereby reducing production of the methyl donor (SAM) and causing release 
of TGS [133,134]. The C1 protein of beta-satellite of Tomato yellow leaf curl china virus 
inactivates S-Adenosyl homocysteine Hydrolase, an enzyme required for synthesis of SAM 
and thus reduces the level of cytosine methylation of viral DNA [135]. The C2 protein of Beet 
severe curly top virus increases the life-span of SAMDC1 and thus suppresses DNA-methyla-
tion mediated gene-silencing in Arabidopsis [136]. The AC2 protein of Indian cassava mosaic 
virus up regulates RAV2, which acts as a transcriptional repressor, inhibiting transcription of 
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KYP, a histone methyl transferase. 

4. Applications of RNA silencing to counter virus attack

	 The viral pathogens depend on the host’s cellular machinery for reproduction; hence it is 
challenging to eliminate them without damaging the host plant. Therefore, most management 
strategies for diseases caused by plant viruses are directed at preventing infection. The RNA 
silencing based strategies to induce a highly specific antiviral state in plantshave been exten-
sively employed to raise virus resistant transgenic plants, even before the exact mechanisms 
were comprehended. This is evident from the commercial cultivation ofPapaya Ringspot Virus 
resistant ‘SunUp’ papaya and virus resistant potato varieties “NewLeaf Plus” and “NewLeaf 
Y”. The understanding of the VIGS and RSS helped to further refine the techniques. The tar-
geting of the RSS, which play an important role in viral pathogenecity, emerged as efficient 
antiviral strategy. Ever since the anti-viral properties of RNAi have been tested in many other 
crops.

4.1. Pathogen –derived resistance

	 Sanford and Johnston [137] developed a simple concept of parasite or pathogen-derived 
resistance to explain the observations that a plant infected with one virus shows resistance to 
infection by same or a closely related virus strain.This concept was utilized in the early at-
tempts to engineer resistance through the introduction of viral genetic material into the plant 
genome [138,139].	

	 An excellent example is provided by the pioneering work of Robert Beachy’s group 
in 1986 by providing coat protein (CP)-mediated resistance to TMV [140]. It was demon-
strated that the over-expression of viral CP gene in transgenic plants could protect these plants 
from the infectionby TMV and closely related tobamoviruses. It was shown that transgeni-
cally expressed CP interfered with the assembly of TMV particles due to hindrance with the 
inter-subunit interactions [141]. These results also indicated that plants could be genetically 
transformed for resistance to virus disease development and the trait of resistance could be 
stably transmitted to the next generation [142]. This phenomenon was referred as coat-protein-
mediated resistance (CP-MR) and was found to be effective in a variety of host or virus com-
bination. CP-MR thus became a choice for the researchers to develop transgenic plants against 
various viruses. The CP-MR was used against theRice Stripe Virus by introducing its CPin 
japonica rice by protoplast electroporation followed by generation of transgenic plants (143). 
CP-MR was also reported for Potato Virus Y in tobacco [144]; Tomato Yellow Leaf Curl Virus 
(TYLCV) in tomato (145); Pea Enation Mosaic Virus in pea [146]; Potato Mop-Top Virus in 
potato [147] and Cucumber Mosaic Virus 1B in tobacco [148].

	 In viruses the CP plays an important role in ssDNA protection, movement and transmis-



sion of viruses. A CP-deficient ACMV-KE clone lost its systemic infection capacity in cassava 
plants and showed reduced functional interaction with its vector Bemisia tabaci [149]. The 
vector specificity determinant regions were also shown in the CP of Abutilon mosaic virus 
[150]. Expression of a mutated non-functional CP therefore appeared to be apotential strategy 
to impede the virus spread amongst its vectors. Later, it was shown that, mutant forms of TMV 
CP had stronger inter-subunit interactions and these were found to confer increased levels of 
CP-MR compared with wild-type CP.

	 The viral replication-associated protein (REP) also emerged as a strong candidate for 
pathogen-derived resistance. The genomes of plant single-stranded DNA viruses do not encode 
polymerases, buttheir replication requires interaction between the REP and host polymerases. 
The Rep protein by itself is not a determinant of disease or pathogenesis [151]. It was shown 
that over-expression of truncated rep gene (encoding for the N-terminal 210 amino acidsof 
REP) showed resistance against Tomato Yellow Leaf Curl Sardinia Virus up to 15 weeks post 
virus inoculation [152,153]. Similar observations were reported for the expression of the N-
terminal region encompassing the DNA binding and oligomerization domain of Tomato leaf 
curl New Delhi Virus. This also accorded resistance to heterologous ACMV, Pepper Huasteco 
Yellow Vein Virusand Potato Yellow Mosaic Virus [154]. 

	 The virus also encodes movement proteins (MP) that are required for cell-to-cell and 
long-distance movement. Tobacco plants expressing Tomato Mottle Virus (TMoV) encoded 
movement proteins, BV1 or BC1, showed a significant delay in infection to TMoV and CaLCV 
infection [155,156]. Non-functional MPs may compete for Nuclear Shuttle Protein; required 
for long distance movement in begomoviruses interaction or oligomerization and this could 
explain the resistance previously observed in mutated MP expressing plants [157]. However 
the overexpression of these proteinsalso had deleterious effects on plant development [158]. 
Over the years, other full-length or truncated viral genes, like RdRp, proteinase, satellite RNA, 
defective interfering RNA, and noncoding regions, have been extensively used to engineer 
virus resistance.

4.2. Antisense RNA

	 Regulation of gene expression by antisense RNA (asRNA) was first discovered as a 
naturally-occurring phenomenon in bacteria [159], however its effectiveness in eukaryotic 
cells was demonstrated as early as 1984 [160]. The antisense technology is based on block-
ing the information flow from DNA via RNA to protein by the introduction of an RNA strand 
complementary to the sequence of the target mRNA. It was hypothesized that the antisense 
RNA base-pairedwith its target mRNA thereby forming dsRNA duplex causing the blockageof 
mRNA maturation and/or translation [161]. It was later shown that the dsRNA is recognised 
as a substrate by the RNA silencing machinery resulting in its rapid degradation into siRNAs 
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which in turn cleave the target mRNAs in a sequence dependent manner. The antisense tech-
nology has potential as therapy to treat many genetic and metabolic disorders, for identifying 
gene functions and in crop development. 	

	 The application of artificial antisense RNA was demonstrated in plants by down-regulat-
ing the chs gene which is responsible for flavonoid biosynthesis [162,163]. The chs-antisense 
RNA elicited increased fungal disease susceptibility in Arabidopsis plants [164]. This technol-
ogy was successfully used in Flavr Savr to delay tomato ripenining and rotting by introduc-
ing the antisense RNA for Polygalactourodase gene to inhibit the synthesis of the enzyme 
[165,166]. The expression of antisense RNA against Potato Leaf Roll Luteovirus CP triggered 
virus resistance in the transgenic plants [167]. Day and coworkers [168] used antisense AL1 
transcripts of TGMV to engineer geminivirus resistance in tobacco plants. Resistance was 
engineered against the Cotton Leaf Curl Virusby using anti-sense constructs of Rep, REn 
and TrAP genes [169]. The antisense technology was also effective in confirming resistance 
against infection by viruses like PVX [170], TMV [171], CMV [171] and TYLCV in Nicoti-
ana benthamiana  [172] and tomato [173].	

4.3. Hairpin RNA and double stranded RNA

	 The direct application of RNA silencing in plants was initiated by theuse of intron loo-
pedself complimentary hairpin RNA (hpRNA) constructs [174]. The hpRNA constructs con-
tained, 100-800 bp long fragments of the target gene cloned in sense and antisense orienta-
tions, separated by an intron sequence. When transcribed in planta the primary transcripts 
folded into a hairpinstructure, which could be recognized and processed by DCLs into siRNAs 
[175]. The siRNAs then induced PTGS and repressed the target gene strongly. These were 
found to be more effective in silencing the target genes as compared to overexpression of an-
tisense transcripts. The hpRNA have emerged as the reagents of choice for triggering specific 
RNAi against a variety of viruses in different plant species [176-178]. These constructs are de-
livered into the cells through agrobacterium or gene gun as plasmid or viral vectors where the 
get transcribed and processed into sRNAs. The hpRNA encoding constructs driven by a maize 
ubiquitin promoter bestowed immunity to transgenicbarley against Barley Yellow Drawf Virus 
[179]. Transgenic plants resistant to Cassava Latent Viruswere produced by introducing a tan-
dem repeat of its subgenomic DNA B [180]. HpRNA construct with 424bp conserved region 
of Bean Golden Mosaic Virus REP was used to generate virus resistant tobacco plants [181]. 
Recently it was reported that a spray application of a long noncoding dsRNA on barley plants 
was effective in targeting three fungal cytochrome P450 lanosterol C-14α-demethylases, re-
quired for biosynthesis of fungal ergosterol [182]. Similarly wheat plants pre-infected with 
BSMV containing antisense sequences against target genes of the fungus, Fusariumculmorum 
caused a reduction of corresponding transcript levels in the pathogen and reduced disease 
symptoms [183]. Similar efforts are ongoing to leverage the power of RNAi in engineering 
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effective, broad-spectrum and ecologically safe resistance against many viruses in different 
crops [184-193]. The major limitation of this technology lies in the generation of aberrant siR-
NAs, which result in silencing of the non-specific genes.	

	 With the unveiling of the mechanism of RNA silencing it was clear that the dsRNA 
serves as the trigger for PTGS, so strategies based on introduction of dsRNA were also em-
ployed. The major bottleneck for the application of this technology lies in the proper design-
ing and effective delivery of siRNAs molecules.Several online softwaresare now available to 
design the correct siRNAs [28]. The choice of delivery technique(s) is more or less governed 
by the preparation of the siRNA. Among the popular approaches for siRNA production are 
chemical synthesis, in vitro transcription, expression vectors and PCR expression cassettes.
It is important to adapt the correct delivery strategies to facilitate better cellular accumulation 
of siRNAs andtheir releaseclose to the respective targets site.It is generally believed that the 
siRNAs are passively endocytosed [184] however,the in vivo transmission of naked siRNAs 
in-vivo is limitatedby inefficient cellular uptake, nucleolytic degradation and other problems 
like trapping in non-desirable cellular compartments. Hence direct application siRNA involves 
mixing these molecules with ‘biocompatible’ and ‘genocompatible’ formulations for appropri-
ate delivery [185].

	 In plants, generally vectors are used to generate and deliver siRNAs to the target tissues 
instead of direct delivery. The use of viral vectors has been discussed in the section 2,1 under 
VIGS. The plasmid vectors can exist as episomes or integrate in the genome. The plasmids are 
used to express around 70-nt shRNAs or hpRNAs, which are transcribed into effective dsR-
NAs capable of silencing the target genes [186,187]. One of the excellent application is the use 
of specific dsRNA and siRNAs for HCPro region to block the replication and transmission of 
PVY through the potato plants [194].

	 The dsRNA also induces genomic methylation [195]. Methylation of the promoter se-
quence induces TGS, which unlike PTGS is stable and heritable. However if methylation 
occurs in the coding sequence, it has no apparent effect on the transcription of the locus, al-
though silencing still occurs at the post-transcriptional level. The dsRNA carrying a sequence 
homologous to the promoter of the transgene can guide the methylation and TGS in plants. 
Methylation of a Tomato Leaf Curl Virus -derived transgene promoter and consequent trans-
gene silencing have been observed on infection [196] strongly suggesting that virus-derived 
siRNAs are also generated for the transcribed and non-transcribed intergenic regions of the 
viral genome [197]. The dsRNA-guided methylation of geminivirus bidirectional promoters 
may down-regulate the transcription of viral genes, resulting in inefficient virus replication 
[198].

4.4. Artificial miRNA
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	 Artificial microRNA (amiRNA) technology is based on designing miRNA or engineer-
ing miRNA artificially by mimicking the intact secondary structure of endogenous miRNA 
precursors to utilize thenatural silencing pathway to target desired transcripts [199,200]. It 
has been shown that altering several nucleotides within sense and antisense strands of miRNA 
has no bearing on its biogenesis and maturation, as long as secondary structure of its precur-
sor remains unaltered. The amiRNA acts as a specific, powerful and robust tool that can be 
applied to study metabolic pathways, gene functions and for improving favourable traits. The 
amiRNA technology was first used for gene knock down in human cell lines [201] and later in 
Arabidopsis [202], where they were shown to effectively interfere with reporter gene expres-
sion. Subsequently, it was demonstrated that amiRNAs when expressed under constitutive or 
tissue-specific promoters can down-regulate a number of endogenous genes without affecting 
the expression of other unrelated genes [124,203].

	 The amiRNA sequences are designed according to the determinants of plant miRNA 
target selection, such that the 21 nt sequence specifically silences its intended target genes. 
They resemble the natural miRNAs in containing a Uracil residue at their 5’ end; having an 
Adenine/ Uracil residue as their 10th nucleotide and displaying 5’ instability relative to their 
amiRNA* sequence [204,205]. The miRNA mediated gene regulation has also emerged as a 
second generation tool in the field of RNAi technology and having various applications in the 
field of agriculture, medicine and in the field of functional genomics studies [203, 206-211].

	 The amiRNA technology is being utilized to target the invading viral gene transcripts 
and the effective strategies employ targeting the viral encoded RSS transcripts [212]. The 
amiRNAs arising from ath-miR-159 backbone were effective in targeting viral sequences en-
coding RSS, P69 of Turnip Yellow Mosaic Virus and HC-Pro of Turnip Mosaic Virus [206]. 
Similarly, amiRNA sequences targeting 2b of Cucumber Mosaic Virus (CMV), a potent RSS, 
can confer effective resistance to CMV infection [208]. The amiRNA targeting overlapping 
regions of geminiviruses genes, AC1, AC2 and AC4 were used to generate transgenic tomato 
plants that could resist infection of ToLCV New Delhi variety [213,214]. These amiRNAs 
were also used for generating resistance againstWatermelon Silver Mottle Virus in tobacco 
[215].

4.5. Artificial tasiRNA

	 Artificial tasiRNA technologyhas also been used to generate virus resistant plants. The 
strategy involves designing a binary vector incorporating the 5’ and 3’ binding sites of miR390 
flanking the RSS sequence on each side, respectively. This vector when introduced in plants 
produces artificial tasiRNAs from the RSS encoding sequences. These tasiRNAs can inacti-
vate the viral transcripts containing homologous sequences. The transgenics producing the 
artificial tasiRNAs were used to protect the plants against the invading ToLCVs [216]. Such 
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strategy could in principle be adopted to develop plants tolerant for other phytoviruses.

5. Figure

6. Tables

15

Advances in Biotechnology

Virus Backbone Reference
RNA Virus and their satellites
Tobacco Mosaic Virus (TMV) [43,52]
SatelliteTobaccoMosaic Virus (STMV) [53]
Potato Virus X (PVX) [37]
Tobacco Rattle Virus (TRV) [44]
Barley Stripe Mosaic Virus (BSMV)W [54,55]
Pea Early Browning Virus (PEBV) [56]
Brome Mosaic Virus (BMV) [57]
Bean Pod Mottle Virus [58]
Cucumber Mosaic Virus (CMV) [59]
Tomato Mosaic Virus (TMV) [60]
DNA Virus
Tomato Golden Mosaic Virus (TGMV) [61]
Cabbage Leaf Curl Virus (CaLCV) [62]
Tomato Leaf Curl Virus (ToLCV) [51,63]
Tomato LeafCurl Virus satellite [64]
Satellite DNAβ of Tomato Yellow Leaf Curl China Virus 
(TYLCV)

[65]

Tobacco Curly Shoot Virus [66]

Table 1: List of viruses used for the construction of VIGS vectors.

Figure 1: The different modes of interference of the known RNA silencing suppressors on miRNA and siRNA 
biogenesis pathway. The suppressors may interrupt the RNA silencing pathway at different steps from the 
beginning of biogenesis,small RNA maturation and loading into RISC.
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7. Conclusions

	 In plants, the RNA-dependent silencing of gene function serves as a key regulatory 
mechanism forming a crucial link between defence, development and adaptation to stress. In 
response to virus attack it encompassesthe first line ofprotection for restricting accumulation 
or spread of invading viruses. The phenomenon of RNA silencing has enormous potential to 
be exploited as a tool to counter virus attack. As a counter defensive mechanism, the viruses 
encode the RSS proteins to replicate and establish in the host plants. The RSS have the ability 
to suppress the RNA silencing at different stages of the pathway andmutation in these proteins 
result in attenuated symptom development and mild disease manifestation. Thus, RNA silenc-
ing based strategies designed to inhibit the RSS activity can play a crucial rolein developing 
virus resistance. It is expected that further growth in knowledge will help in adapting more in-
novative designs to enhance the robustness of RNAi technology towards developing disease-
free crop plants.

Table 2: List of suppressor molecules identified from different plant viruses.

Genome 
genome Virus Suppressor 

protein
Type of silencing 
mechanism Reference

DNA

African cassava mosaic virus
AC2

AC4

Local

Systemic
(68, 73)

Tomato golden mosaic virus AL2 - (74)
Tomato yellow leaf curl 
virus-C C2 Local and Systemic (75, 76)
Beet curly top virus L2 - (74)

RNA

Turnip crinkle virus CP (P38) Local (77, 78)
Beet yellows virus p21 Local (79)
Citrus tristeza virus p20 Local (80)

p23 Local and Systemic (80)
CP Systemic (80)

Beet yellow stunt virus P22 Local (79)

Cowpea mosaic virus S coat Local
(68)

Cucumber mosaic virus 2b Local* and Systemic (81, 82)
Peanut clump virus p15 Local and Systemic (83)
Barley stripe mosaic virus γb - (84)
Beet western yellows virus P0 Local and not 

systemic (85)
Potato virus X P25 Systemic (86)
Potato virus Y HC-Pro Local and Systemic* (81, 87)
Rice yellow mottle virus P1 - (68)
Tomato mosaic virus 126-kDa 

protein - (68, 88)
130-kDa 
protein Local (89)

Tomato bushy stunt virus P19 Local and Systemic 
(binds siRNAs) (68, 90)

Cymbidium ringspot virus P19 Local and Systemic 
(binds siRNAs) (91)

Turnip yellow mosaic virus p69 Local (50)
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