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Chapter 3

Advances in Chemical
Engineering

The Rotating Disc Electrode (RDE) technique has proved to be of 
considerable use in the study of electrode processes. In this chapter, 
mathematical models for a rotating disc electrode for the steady 
and transient states are discussed. Rotating disc electrodes can be 
modeled with linear and non-linear convection differential equations 
of EC’, EC, Disp, and ECE reactions mechanism. The exact analytical 
solution of the non-linear convective diffusion problem is possible 
only for relatively simple cases. But for more complex cases, 
incorporating homogeneous reaction as well as heterogeneous charge 
transfer, the usual approach has not been used to find the solution 
of the differential equations. In this chapter, the recent modeling 
developments (analytical solution) of the chronoamperometric and 
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potentiometric current produced in a rotating disk electrode from all 
the electrochemical reactions are reviewed.

Keywords: Mathematical Modelling; Rotating Disc Electrode; Convection-Diffusion Equation; Nonlinear Equations; 
Analytical Solution; Numerical Solution.

1. Introduction

 Rotating Disc Electrodes (RDEs) have found considerable application in the study of 
those electrode reactions involving electron transfers coupled to homogeneous chemical reac-
tions. The current density measured from the rotating electrode is contributed by both the cur-
rent densities of electrode electron transfer reaction and the reactant diffusion. It is essential 
to research and understand both the theories of the electrode electron-transfer reaction and the 
reactant diffusion in order to obtain the kinetic parameters of these two processes and their 
reaction mechanisms, based on the experiment's results.

 The central part of the RDE theory and technique is the convection of the electrolyte 
solution. According to the convection of the solution, the reactant in the solution should flow 
at the same transport rate. Let’s first consider the situation where electrolyte solution flows up-
ward from the bottom of the electrode edge with a direction parallel to the electrode surface to 
see how the diffusion convection layer can be formed and what is its mathematic expression. 
The flexibility of microelectrodes to interrogate fast electrochemical reactions has resulted in 
a wide range of analytical, semi-analytical, and numerical methods to solve many predomi-
nantly first-order mechanisms (E, CE, EC, EC’, ECE, DISP1, DISP2, and EC2E). 

2. Nonlinear Equation in Rotating Disc Electrode

 The system of second-order non-linear equations in rotating disk electrodes and their 
studies arises in various contexts such as electrochemical cell [1] and flow and heat transfer 
process in fluids [2,3] among others. Von Kármán swirling viscous flow [4] is a famous classi-
cal problem in fluid mechanics. The computational tools developed to simulate the setup also 
constitute one of the most rigorously studied systems in electrochemical engineering [5-8]. 
Hydrodynamic electrochemistry at rotating disc electrodes has been widely used to study elec-
trode kinetics and mechanism of different kinds of reactions [9-11].

 A chemical reaction couples two electrode reactions if the product of the first electrode 
reaction is the reactant of a chemical reaction, and the product of the latter is a reactant of the 
second electrode reaction [ 12-16]. For steady-state conditions, Levich [17] obtained the ana-
lytical expression for limiting the current of the rotating electrode under the assumption of in-
finite Schmidt numbers (Sc). Compton et al. [18] obtained the chronoamperometry current for 
ECE, DISP1, DISP2, EC, and CE reaction by solving the convective diffusion equation using 
the Hales method. Lin et al. [19] derived the catalytic current at a rotating disk electrode using 
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the perturbation method. Bartlett et al. [20] derived the approximate analytical expression of 
flow at a rotating disc electrode for ECE reactions for various limiting cases.

 Chitra et al. [21] derived the approximate analytical expressions for the velocity com-
ponent from small and long-distance expressions using the Padé approximation method for 
all values of dimensionless distance. Saravanakumar et al. [22] obtained the non-steady state 
current at a rotating disk electrode for all time by solving the convection-diffusion equation 
analytically. Jansi Rani et al. [23] reported current at a rotating disk electrode under transient 
and steady-state conditions using the homotopy perturbation method.

 Recently Visuvasam et al. [24] derived an analytical expression of the current generated 
from the electrochemical reaction in a porous rotating disk electrode (PRDE). Saravanakumar 
et al. [25] obtained the analytical expression of concentrations and current for a rotating disc 
electrode for E, EC’ and ECE reactions for all values of parameters. Kirthiga et al. [26] devel-
oped the theoretical analysis which describes transport and kinetics at electrodes, which have 
been chemically modified with highly dispersed meshes of single-wall carbon nanotubes.

 Saravanakumar et al. [27] solved the nonlinear convective migration diffusion equation 
in the rotating disc electrode. A simple closed-form analytical expression for the concentration 
of a three-ion system is derived under the assumption that all ions have the same diffusivity 
of electrode processes. He recently solved the one-dimensional convection-diffusion equation 
and its fractional modification for E reaction arising in rotating disk electrodes [28]. Diard and 
Montella [29] obtained the steady-state concentration of species near a uniformly accessible 
rotating disk electrode, using both symbolic and numerical methods. Visuvasam et al. [30] 
obtained the analytical expression for concentration profile and current at the rotating disc 
electrode.  

3. Analytical Solutions of Rotating Disc Electrodes

 The concentration/current at a rotating disc electrode is controlled by diffusion, con-
vection, and migration. Non-linear phenomena play a crucial role in physical chemistry and 
biology (heat and mass transfer, filtration of liquids, diffusion in chemical reactions, etc.). In 
the past several decades, many authors mainly paid attention to the resolution of non-linear 
equations by using various analytical and numerical methods, such as the variational iteration 
method(VIM) [31-34], the homotopy perturbation method (HPM) [35-38] and the Adomian 
decomposition method (ADM)[39-41], Hales method [18], Taylor series method [28,30], Pade 
approximation method [21,30], exp-function method [42], Hyperbolic function method [30].

4. Numerical Solutions of Rotating Disc Electrodes

 Electrochemical simulations are one particular approach to understand the processes 
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at electrodes [43-46]. Ming et al. [3] solved the system of highly non-linear differential equa-
tions using the multi-shooting methods. Diard et al. [29] used the numerical methods to obtain 
the steady-state concentration of species near a uniformly accessible rotating disk electrode. 
White et al. [47] solved the problem numerically by Newman technique [48]. Mathematical 
demonstration using Mathematica software for von Kármán swirling flow of RDEis created by 
Higgins and Binous [49]. 

 Bikash Sahool et al. [50] adopting the direct multiple shooting method for the solutions 
of a coupled and non-linear system of differential equations, arising due to the steady Kármán 
flow and heat transfer of a viscous fluid in a porous medium. Porous enzymatic electrodes fol-
lowing DET [51] and MET [52] mechanisms have also been simulated. The models pointed 
out that the major limitation was the mass transfer limitation. Theoretical and numerical simu-
lations of diffusion and kinetics in amperometric immobilized enzyme electrodes for redox 
mediator entrapped within the film using the relaxation method was investigated by Bartlett et 
al. [53].

5. Analytical Expressions of Concentrations and Current

 The recent contributions to the analytical expression of concentration and current for 
rotating disc electrodes for various mechanisms are given the Table-1.
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6. Conclusion 

 Most mathematical and theoretical models of rotating disc electrode are based on 
nonlinear reaction-diffusion differential equations. Various novel and advanced analytical 
methods such as the homotopy perturbation method, the Taylors series method, the Pade 
approximation technique, exp-function, hyperbolic function method, etc. have been employed to 
obtain approximate analytical solutions under steady and non-steady state conditions. Reliable 
analytical results are very useful for the analysis of various parameters like the thickness of 
the electrode, the loading of the different species, steady-state current, flux, diffusion rate, rate 
constant, reaction rate, the permeability of the porous medium, diffusion coefficients, kinematic 
viscosity, and voltammetry current is derived. In conclusion, rotating disc electrodes have made 
significant progress in power efficiency and stability since their conception. However, there is 
still a need for further theoretical and simulation research to make them a more technically and 
commercially feasible solution for wearable, implantable, and portable devices powering.
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